Start Submission Become a Reviewer

Reading: Impact of Fraserdale CO2 observations on annual flux inversion of the North American boreal ...

Download

A- A+
Alt. Display

Original Research Papers

Impact of Fraserdale CO2 observations on annual flux inversion of the North American boreal region

Authors:

Chiu-Wai Yuen ,

Earth System Research, CA
X close

Kaz Higuchi,

Air Quality Research Branch, Meteorological Service of Canada, CA
X close

Transcom-3 Modellers

About Transcom-3

D. Baker, P. Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, A. S. Denning, S. Fan, I. Fung, M. Gloor, K. R. Gurney, M. Heimann, J. John, R. M. Law, T. Maki, S. Maksyutov, B. Pak, P. Peylin, M. Prather, P. Rayner, J. Sarmiento, S. Taguchi, T. Takahashi

X close

Abstract

In TransCom-3 (Level 1), atmospheric CO2 measurements from 76 monitoring stations for the period 1992–1996 and 16 atmospheric transport models were used to constrain annual mean CO2 fluxes over 11 land and 11 ocean regions. The tower measurements of atmospheric CO2 from Fraserdale, a continental site in northern Ontario, Canada are now available and processed for use in the TransCom-3 inverse modelling framework. In this short study, we show that by including this set of continental CO2 data, the estimated flux for the North American boreal region becomes nearly zero, a reduction of about 0.26 Pg C yr−1 from the previous estimate. The uncertainty of the estimated flux for this region is also reduced by ~30%. All transport models show negative changes for boreal North America, with the strongest responses (~−0.5 Pg C yr−1) shown by NIRE, NIES, CSU and SKYHI. Furthermore, models showing a strong response in boreal North America tend to show strong sensitivity in middle- and high-latitude Asian regions.

How to Cite: Yuen, C.-W., Higuchi, K. and Modellers, T.-. 3 ., 2005. Impact of Fraserdale CO2 observations on annual flux inversion of the North American boreal region. Tellus B: Chemical and Physical Meteorology, 57(3), pp.203–209. DOI: http://doi.org/10.3402/tellusb.v57i3.16541
  Published on 01 Jan 2005
 Accepted on 18 Feb 2005            Submitted on 29 Oct 2004

References

  1. Bakwin , P. S. , Tans , P. P. , Hurst , D. E and Zhao , C . 1998 . Measurements of carbon dioxide on very tall towers: results of the NOAA/CMDL program . Tellus 50B , 401 – 415 .  

  2. Chen , J. M. , Chen , W. , Liu , J. and Cihlar , J . 2000 . Annual carbon balance of Canada's forests during 1985-1996 . Global Biogeochem. Cycles 14 , 839 – 850 .  

  3. Chen , J. M. , Ju , W. , Cihlar , J. , Price , D. , Liu , J. and co-authors 2003. Spatial distribution of carbon sources and sinks in Canada's forests. Tellus 55B, 622 – 641  

  4. Enting , I . 2002 . Inverse Problems in Atmospheric Constituent Transport . Cambridge University Press , Cambridge .  

  5. Fan , S. , Gloor , M. , Mahlman , J. , Pacala , S. , Sarmiento , J. and co-authors. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 282, 442 – 446.  

  6. GLOBALVIEW- 0O2 2000. Cooperative Atmospheric Data Integration Projection-Carbon Dioxide, CD-ROM. NOAA CMDL, Boulder, CO.  

  7. Gloor , M. , Fan , S. , Pascala , S. , Sarmiento , J. and Ramonet , M . 1999 . A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale . J. Geophys. Res . 104 , 14 245-14 260 .  

  8. Gloor , M. , Fan , S. , Pascala , S. and Sarmiento , J . 2000 . Optimal sampling of the atmosphere for purpose of inverse modeling: A model study . Global Biogeochem. Cycles 14 , 407 – 428 .  

  9. Gurney , K. , Law , R. , Denning , S. , Rayner , P. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626 – 630.  

  10. Gurney , K. , Law , R. , Denning , S. , Rayner , P. and co-authors. 2003. TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus 55B, 555 – 579  

  11. Higuchi , K. , Worthy , D. , Chan , D. and Shashkov , A . 2003 . Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada . Tellus 55B , 115 – 125 .  

  12. Kurz , W. A. and Apps , M. J . 1999 . A 70-yr retrospective analysis of carbon fluxes in the Canadian forest sector . Ecol Model . 9 , 526 – 547 .  

  13. Law , R. , Chen , Y.-H. , Gurney , K. and TransCom 3 Modellers. 2003. TransCom CO2 inversion intercomparison: 2. Sensitivity of annual mean results to data choices. Tellus 55B, 580 – 595  

  14. Maksyutov , S. , Machida , T. , Mukai , H. , Patra , P. , Nakazawa , T. and co-authors. 2003. Effect of recent observations on Asian CO2 flux estimates by transport model inversions. Tellus 55B, 552 – 529  

  15. Masarie , K. A. and Tans , P. P . 1995 . Extension and integration of atmo-spheric carbon dioxide data into a globally consistent measurement record . J. Geophys. Res. 100 , 11 593-11 610 .  

  16. Patra , P. , Maksyutov , S. and Transcom-3 Modelers. 2003. Sensitivity of optimal extension of CO2 observation networks to the model transport. Tellus 55B, 498 – 511  

comments powered by Disqus