Start Submission Become a Reviewer

Reading: Southern Ocean ventilation inferred from seasonal cycles of atmospheric N2O and O2/N2 at Cap...

Download

A- A+
Alt. Display

Original Research Papers

Southern Ocean ventilation inferred from seasonal cycles of atmospheric N2O and O2/N2 at Cape Grim, Tasmania

Authors:

C. D. Nevison ,

National Center for Atmospheric Research, US
X close

R. F. Keeling,

Scripps Institution of Oceanography, US
X close

R. F. Weiss,

Scripps Institution of Oceanography, US
X close

B. N. Popp,

University of Hawaii, Honolulu, US
X close

X. Jin,

University of California, US
X close

P. J . Fraser,

Commonwealth Scientific and Industrial Research Organization, Atmospheric Research Division, AU
X close

L. W. Porter,

Cape Grim Baseline Air Pollution Station, Bureau of Meteorology, AU
X close

P. G. Hess

National Center for Atmospheric Research, US
X close

Abstract

The seasonal cycle of atmospheric N2O is derived from a 10-yr observational record at Cape Grim, Tasmania (41°S, 145°E). After correcting for thermal and stratospheric influences, the observed atmospheric seasonal cycle is consistent with the seasonal outgassing of microbially produced N2O from the Southern Ocean, as predicted by an ocean biogeochemistry model coupled to an atmospheric transport model (ATM). The model—observation comparison suggests a Southern Ocean N2O source of ~0.9 Tg N yr−1 and is the first study to reproduce observed atmospheric seasonal cycles in N2O using specified surface sources in forward ATM runs. However, these results are sensitive to the thermal and stratospheric corrections applied to the atmospheric N2O data. The correlation in subsurface waters between apparent oxygen utilization (AOU) and N2O production (approximated as the concentration in excess of atmospheric equilibrium ΔN2O) is exploited to infer the atmospheric seasonal cycle in O2/N2 due to ventilation of O2-depleted subsurface waters. Subtracting this cycle from the observed, thermally corrected seasonal cycle in atmospheric O2/N2 allows the residual O2/N2 signal from surface net community production to be inferred. Because N2O is only produced in subsurface ocean waters, where it is correlated to O2 consumption, atmospheric N2O observations provide a methodology for distinguishing the surface production and subsurface ventilation signals in atmospheric O2/N2, which have previously been inseparable.

How to Cite: Nevison, C.D., Keeling, R.F., Weiss, R.F., Popp, B.N., Jin, X., Fraser, P.J., Porter, L.W. and Hess, P.G., 2005. Southern Ocean ventilation inferred from seasonal cycles of atmospheric N2O and O2/N2 at Cape Grim, Tasmania. Tellus B: Chemical and Physical Meteorology, 57(3), pp.218–229. DOI: http://doi.org/10.3402/tellusb.v57i3.16533
1
Views
1
Downloads
  Published on 01 Jan 2005
 Accepted on 25 Nov 2004            Submitted on 10 May 2004

References

  1. Balkanslci , Y. , Monfray , P. , Battle , M. and Heimann , M . 1999 . Ocean primary production derived from satellite data: an evaluation with atmospheric oxygen measurements . Global Biogeochem. Cycles 13 , 257 – 271 .  

  2. Bange , H. W. , Rapsomanilcis , S. and Andreae , M. O . 1996 . Nitrous oxide in coastal waters . Global Biogeochem. Cycles 10 , 197 – 207 .  

  3. Battle , M. , Bender , M. , Hendricks , M. B. , Ho , D. T. , Mika , R. and co-authors 2003. Measurements and models of the atmospheric Ar/N2 ratio. Geophys. Res. Lett. 30,1786, https://doi.org/10.1029/2003GL017411 .  

  4. Behrenfeld , M. J. and Fallcowski , P. G . 1997 . Photosynthetic rates derived from satellite-based chlorophyll concentration . Limnol. Oceanogr 42 , 1 – 20 .  

  5. Bender , M. , Ellis , T. , Tans , P. , Francey , R. and Lowe , D . 1996 . Variability in the 02/N2 ratio of southern hemisphere air, 1991-1994: Implications for the carbon cycle . Global Biogeochem. Cycles 10 , 9 – 21 .  

  6. Bouwman , A. F. and Taylor , J. A . 1996 . Testing high-resolution nitrous oxide emission estimates against observations using an atmospheric transport model . Global Biogeochem. Cycles 10 , 307 – 318 .  

  7. Bouwman , A. F. , van der Hoek , K. W. and Olivier , J. G. J . 1995 . Testing high-resolution nitrous oxide emission estimates against observations using an atmospheric transport model . J. Geophys. Res . 100 , 2785 – 2800 .  

  8. Butler , J. H. , Elkins , J. W. and Thompson , T. M . 1989 . Tropospheric and dissolved N20 of the west Pacific and east Indian Oceans during the El Nino Southern Oscillation event of 1987 . J. Geophys. Res . 94 , 14 865-14 877 .  

  9. Cohen , Y. and Gordon , L. I . 1978 . Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production . Deep-Sea Res . 25 , 509 – 524 .  

  10. Crutzen , P. J . 1974 . Estimates of possible variations in total ozone due to natural causes and human activities . Ambio 3 , 201 – 210 .  

  11. de Bie , M. J. M. , Middelburg , J. J. , Starink , M. and Laanbroek , H. J . 2002 . Factors controlling nitrous oxide at the microbial community and estuarine scale . Mar. EcoL Prog. Ser 240 , 1 – 9 .  

  12. Dutay , J.-C. , Bullister , J. L. , Doney , S. C. , On , J. C. , Najjar , R. and co-authors 2002. Evaluation of ocean model ventilation with CFC-11: comparison of 13 global models. Ocean Modelling 4, 89 – 120.  

  13. Garcia , H. E. and Keeling , R. F . 2001 . On the global oxygen anomaly and air-sea flux . J. Geophys. Res. 106(C12) , 31 155-31 166 .  

  14. Grist , J. P. and Josey , S. A . 2003 . Inverse analysis adjustment of the SOC air-sea flux climatology using ocean heat transport constraints . J. Clim . 16 , 3274 – 3295 .  

  15. Hall , B. D. , Butler , J. H. , Clarke , A. D. , Dutton , G. S. , Elkins , J. W. and co-authors 2002. Halocarbons and other atmospheric trace species. In: CMDL Summary Report 26 Chapter 5 (eds D. B. King, R. C. Schnell, R. M. Rosson and C. Sweet). US Department of Commerce, National Oceanic and Atmospheric Administration, Boulder, CO.  

  16. Horowitz , L. W. , Walters , S. , Mauzerall , D. L. , Emmons , L. K. , Rasch , P. J. and co-authors 2003. A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J. Geophys. Res . 108 ( D24 ), 4784, https://doi.org/10.1029/2002JDO02853 .  

  17. Horrigan , S. G. , Carlucci , A. F. and Williams , P.M . 1981 . Light inhibition of nitrification in sea-surface films . J. Mar Res . 39 , 557 – 565 .  

  18. Jin , X. and Gruber , N . 2003 . Offsetting the radiative benefit of ocean iron fertilization by enhancing N20 emissions . Geophys. Res. Lett . 30 ( 24 ), 2249 .  

  19. Keeling , R. E , Blaine , T. , Paplawsky , B. , Katz , L. , Atwood , C. and co-author 2004. Measurement of changes in atmospheric Ar/N2 ratio using a rapid-switching, single-capillary mass spectrometer system. Tellus 56B, 322 – 338  

  20. Keeling , R. E , Najjar , R. G. , Bender , M. L. and Tans , P. P . 1993 . What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochem . Cycles 7 ( 1 ), 37 – 67 .  

  21. Keeling , R. F. , Piper , S. C. and Heimann , M . 1996 . Global and hemispheric CO2 sinks deduced from changes in atmospheric 02 concentration . Nature 381 , 218 – 221 .  

  22. Keeling , R. E and Shertz , S. R . 1992 . Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle . Nature 358 , 723 – 727 .  

  23. Keeling , R. F. , Stephens , B. B. , Najjar , R. G. , Doney , S. C. , Archer , D. and co-author 1998. Seasonal variations in the atmospheric 02/N2 ratio in relation to the kinetics of air-sea gas exchange. Global Biogeochem. Cycles 12 ( 1 ), 141 – 163.  

  24. Kim , K . -R. and Craig, H. 1990. Two-isotope characterization of N20 in the Pacific Ocean and constraints on its origin in deep water. Nature 347, 58 – 61.  

  25. Kroeze , C. , Mosier , A. and Bouwman , L . 1999 . Closing the global N20 budget: a retrospective analysis 1500-1994 . Global Biogeochem. Cycles 13 , 1 – 8 .  

  26. Law , C. S. and Ling , R. D . 2001 . Nitrous oxide flux and response to increased iron availability in the Antarctic Circumpolar Current . Deep-Sea Res . 11 48 , 2509 – 2527 .  

  27. Levin , I. , Ciais , P. , Langenfelds , R. , Schmidt , M. , Ramonet , M. and co-authors 2002. Three years of trace gas observations over the EuroSi-berian domain derived from aircraft sampling—a concerted action. Tellus 54B, 696 – 712  

  28. Liao , T. , Camp , C. D. and Yung , Y. L . 2004 . The seasonal cycle of N20 . Geophys. Res. Lett . 31 , 17 108 .  

  29. Lueker , T. J. , Walker , S. J. , Vollmer , M. K. , Keeling , R. E , Nevison , C. D. and co-author 2003. Coastal upwelling air-sea fluxes revealed in atmospheric observations of 02/N2, CO2 and N20. Geophys. Res. Lett. 30, 1292.  

  30. Machida , T. , Nalcazawa , T. , Tanaka , M. , Fufii , Y. , Aoki , S. and co-author 1995. Atmospheric methane and nitrous oxide concentrations during the last 250 years. Geophys. Res. Lett . 22 , 2921 – 2924 .  

  31. Milliff , R. F. and Morzel , J . 2001 . The global distribution of the time average wind stress curl from NSCAT. J. Atmos. Sc i . 58 , 109 .  

  32. Moore , J. K. and Abbott , M. R . 2000 . Phytoplankton chlorophyll distributions and primary production in the Southern Ocean . J. Geophys. Res. 105(C12) , 28 709-28 722 .  

  33. Mosier , A. , Kroeze , C. , Nevison , C. , Oenema , O. , Seitzinger , S. and co-author 1998. Closing the global atmospheric N20 budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling Agroecosyst. 52, 225 – 248.  

  34. Najjar , R. G. and Keeling , R. F . 2000 . Mean annual cycle of the air-sea oxygen flux: a global view . Global Biogeochem. Cycles 14 ( 2 ), 573 – 584 .  

  35. Naqvi , S. W. A. , Jayakumar , D. A. , Narvelcar , P. V. , Naik , H. , Sarma , V. V. S. S. and co-authors 2000. Increased marine production of N20 due to intensifying anoxia on the Indian continental shelf. Nature 408, 346 – 349.  

  36. Naqvi , S. W. A. , Yoshinari , T. , Jayakumar , D. A. , Altabet , M. A. , Narvekar , P. V. and co-authors 1998. Budgetary and biogeochemical implications of N20 isotope signatures in the Arabian Sea, Nature 394, 462 – 464.  

  37. Nevison , C. D. and Holland , E. A . 1997 . A reexamination of the impact of anthropogenically fixed nitrogen on atmospheric N20 and the stratospheric 03 layer . J. Geophys. Res . 102 , 25519-25 536 .  

  38. Nevison , C. D. , Butler , J. H. and Elkins , J. W . 2003 . Global distribution of N20 and the A N20/AOU ratio in the subsurface ocean . Global Biogeochem. Cycles 17 ( 4 ), 1119 .  

  39. Nevison , C. D. , Kinnison , D. E. and Weiss , R. F . 2004a . Strato-spheric influence on the tropospheric seasonal cycles of nitrous ox-ide and chlorofluorocarbons . Geophys. Res. Lett . 31 ( 20 ), L20103 , https://doi.org/10.1029/2004GL020398 .  

  40. Nevison , C. D. , Lueker , T. J. and Weiss , R. F . 2004b . Quantifying the nitrous oxide source from coastal upwelling . Global Biogeochem. Cycles 18 ( 1 ), 1018 .  

  41. Nevison , C. D. , Weiss , R. E and Erickson , D. J . 1995 . Global oceanic emissions of nitrous oxide . J. Geophys. Res. Oceans 100(C8) , 15 809-15 820 .  

  42. Plumb , R. A. and Ko , M. K. W . 1992 . Interrelationships between mixing ratios of long-lived stratospheric constituents . J. Geophys. Res . 97(1)9), 10 145-10 156 .  

  43. Plumb , R. A. and McConalogue , D. D . 1988 . On the meridional structure of long-lived tropospheric constituents . J. Geophys. Res. 93(D12) , 15 897-15 913 .  

  44. Popp , B. N. , Westley , M. B. , Toyoda , S. , Miwa , T. , Dore , J. E. and co-authors 2002. Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N20 in the oligotrophic subtropical North Pacific gyre. Global Biogeochem. Cycles 16, 2001GB001806 .  

  45. Potter , C. S. , Matson , P. A. , Vitousek , P. M. and Davidson , E. A . 1996 . Process modeling of controls on nitrogen trace gas emissions from soils worldwide . J. Geophy. Res . 101 ( D1 ), 1361 – 1377 .  

  46. Prather , M. , Ehhalt , D. , Dentener , F. , Derwent , R. , Dlugokencky , E. and co-authors 2001. Atmospheric chemistry and greenhouse gases. In: Climate Change 2001: the Scientific Basis. Contribution of Working Group Ito the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds J. T. Houghton et al.). Cambridge University Press , Cambridge , 239 – 287  

  47. Prinn , R. G. , Weiss , R. E , Fraser , P. J. , Simmonds , P. G. , Cunnold , D. M. and co-authors 2000. A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J. Geophy. Res. 105 ( 014 ), 17 751-17 792.  

  48. Reynolds , R. W. , Rayner , N. A. , Smith , T. M. , Stokes , D. C. and Wang , W . 2002 . An improved in situ and satellite SST analysis for climate . J. Climate 15 ( 13 ), 1609 – 1625 .  

  49. Rintoul , S. and Trull , T . 2001 . Seasonal evolution of the mixed layer in the Subantarctic Zone south of Australia . J. Geophys. Res. 106(C12) , 31 447-31 462 .  

  50. Seitzinger , S. P. and Kroeze , C . 1998 . Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems . Global Biogeochem. Cycles 12 , 93 – 113 .  

  51. Stephens , B. B. , Keeling , R. F. , Heimann , M. , Six , K. D. , Murnane , R. and co-author 1998. Testing global ocean carbon cycle models us-ing measurements of atmospheric 02 and CO2 concentration. Global Biogeochem. Cycles 12, 213 – 230.  

  52. Suntharalingam , P. and Sarmiento , J. L . 2000 . Factors governing the oceanic nitrous oxide distribution: simulations with an ocean general circulation model . Global Biogeochem. Cycles 14 , 429 – 454 .  

  53. Takahashi , T. , Poisson , A. , Metzl , N. , Tilbrook , B. , Bates , N. and co-authors 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. 11 49, 1601 – 1622.  

  54. Taylor , J. A. 1992. A global three-dimensional Lagrangian tracer trans-port modeling study of the sources and sinks of nitrous oxide. Math. Comput. Simulat. 33, 597 – 602.  

  55. Toyoda , S. , Yoshida , N. , Miwa , T. , Matsui , Y. , Yamagishi , H. and co-authors 2002. Production mechanism and global budget of N20 in-ferred from its isotopomers in the western North Pacific. Geophys. Res. Lett. 29 ( 3 ), https://doi.org/10.1029/2001GL014311 .  

  56. Volk , C. M. , Elkins , J. W. , Fahey , D. W. , Dutton , G. S. , Gilligan, J. M. and co-authors 1997. Evaluation of source gas lifetimes from stratospheric observations. J. Geophys. Res . 102 ( 321 ), 25 543-25 564.  

  57. Wanninkhof , R . 1992 . Relationship between wind speed and gas ex-change over the ocean . J. Geophys. Res. Oceans 97 ( C5 ), 7373 – 7382 .  

  58. Ward , B. B . 1986. Nitrification in marine environments. In: Nitrification (ed. J. I. Prosser), IRL Press, Washington, DC, 157 – 184  

  59. Weiss , R. F . 1981 . The temporal and spatial distribution of tropospheric nitrous oxide . J. Geophys. Res . 86 , 7185 – 7195 .  

  60. Weiss , R. F. and Price , B. A . 1980 . Nitrous oxide solubility in water and seawater . Mar Chem . 8 , 347 – 359 .  

  61. Yoshinari , T . 1976 . Nitrous oxide in the sea . Mar Chem . 4 , 189 – 202 .  

comments powered by Disqus