Start Submission Become a Reviewer

Reading: Variations of constituents of individual sea-salt particles at Syowa station, Antarctica

Download

A- A+
Alt. Display

Original Research Papers

Variations of constituents of individual sea-salt particles at Syowa station, Antarctica

Authors:

Keiichiro Hara ,

National Institute of Polar Research, JP
X close

Kazuo Osada,

Nagoya University, Graduate School, Earth and Environmental Sciences, JP
X close

Mizuka Kido,

Toyama Prefectural Environmental Science Research Center, JP
X close

Katsuji Matsunaga,

Nagoya University, Graduate School, Earth and Environmental Sciences, JP
X close

Yasunobu Iwasaka,

Nagoya University, Graduate School, Earth and Environmental Sciences, JP
X close

Gen Hashida,

National Institute of Polar Research, JP
X close

Takashi Yamanouchi

National Institute of Polar Research, JP
X close

Abstract

Sampling of atmospheric aerosol particles was carried out at Syowa station, Antarctica (39.58°E, 69.00°S) in 1998. For a better understanding of sea-salt chemistry in the coastal Antarctic regions, individual sea-salt particles were analysed using a scanning electron microscope equipped with energy dispersive X-ray spectrometer (SEM-EDX). Individual particle analysis indicates that more sea-salt particles were modified in fine particles (0.2–2 µm in diameter) through heterogeneous reactions mainly with gaseous sulfur species in the summer and reactive nitrogen oxides in the winter—spring. In particular, sea-salt particles in the coastal Antarctic atmosphere may be modified by heterogeneous reactions with not only SO2 and H2SO4 but also volatile sulfur species (e.g. CH3SO3H, DMS and DMSO) derived from bioactivity on the ocean surface during the summer. Also, low air temperature and a larger extent of sea ice offshore Syowa probably enhanced release of fractionated sea-salt particles (S-rich, Mg-rich, K-rich and Ca-rich) from the surface of snow and sea ice, particularly in September—October 1998. In addition, we attempt to estimate the scavenging rate of atmospheric sulfur species and reactive nitrogen oxides by dry deposition of sea-salt particles. Our estimation suggests that the upper limit of the scavenging rate of atmospheric sulfur species by sea-salt particles could rise to approximately 0.5 nmol m2 day1 at Syowa station during the summer. This value corresponded to about 30% of the concentration of particulate sulfur species such as non-sea-salt (nss)-SO2− 4 and CH3SO 3 and ~10% of total atmospheric sulfur species (nss-SO2− 4, CH3SO 3 and SO2). In contrast, the estimated NO 3 scavenging rate by sea-salt particles was ~0.2 nmol m2 day1, which is similar to the dry deposition rate of HNO3+N2O5 (approximately 0.2–0.3 nmol m2 day1). Hence, sea-salt particles probably play an important role as scavengers of acidic species in the coastal Antarctic regions.

How to Cite: Hara, K., Osada, K., Kido, M., Matsunaga, K., Iwasaka, Y., Hashida, G. and Yamanouchi, T., 2005. Variations of constituents of individual sea-salt particles at Syowa station, Antarctica. Tellus B: Chemical and Physical Meteorology, 57(3), pp.230–246. DOI: http://doi.org/10.3402/tellusb.v57i3.16530
  Published on 01 Jan 2005
 Accepted on 18 Nov 2004            Submitted on 20 Apr 2004

References

  1. Barcellos da Rosa , M. , Elend , M. and Zetzsch, C. 2000. Some reactions of DMSO and MSIA in the aqueous phase of sea-spray. CMD Annual Report, 131 – 135.  

  2. Bardouki , H. , Barcellos da Rosa , M. , Mihalopoulos , N. , Palm , W.-U. and Zetzsch, C. 2002. Kinetics and mechanism of the oxidation of dimethylsulfoxide (DMSO) and methanesulfinate (M51-) by OH rad-icals in aqueous medium. Atmos. Environ. 36, 4627 – 4634.  

  3. Barrie , L. A. and Hoff , R. M . 1984 . The oxidation rate and residence time of sulphur dioxide in the Arctic atmosphere . Atmos. Environ . 18 , 2711 – 2722 .  

  4. Berresheim , H. , Huey , J. W. , Thorn , R. P. , Eisele , F. L. , Tanner , D. J. and co-author 1998. Measurements of dimethyl sulfide, dimethyl sulfox-ide, dimethyl sulfone, and aerosol ions at Palmer Station, Antarctica . J. Geophys. Res . 103 , 1629– 1637 .  

  5. Brimblecombe , P. and Clegg , S. L . 1988 . The solubility and behavior of acidic gases in the marine aerosol . J. Atmos. Chem . 7 , 1 – 18 .  

  6. Cavalieri , D. , Parkinson , C. , Gloerson , P. and Zwally , H. J . 1999 ( updated 2002 ). Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I Passive Microwave Data CD-ROM. National Snow and Ice Data Center , Boulder , CO .  

  7. Charlson , R. J. , Lovelock , J. E. Andreae , M. O. and Warren , S. G . 1987 . Oceanic phytoplanlcton, atmospheric sulphur, cloud albedo and cli-mate . Nature 326 , 655 – 661 .  

  8. Davis , D. , Chen , G. , Kasibhatla , P. , Jefferson , A. , Tanner , D. and co-authors 1998. DMS oxidation in the Antarctic marine boundary layer: comparison of model simulations and field observations of DMS, DMS02, H2504 (O, MSA (g), and MSA (p) . J. Geophys. Res . 103 , 1657– 1678 .  

  9. De Bruyn , W. J. , Shorter , J. A. , Davidovits , R , Worsnop , D. R. , Zahniser , M. S. and co-author. 1994. Uptake of gas phase sul-fur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces. J. Geophys. Res . 99 , 16927 – 16932.  

  10. Draxler , R. R. and Rolph , G. D . 2003 . HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model , ( http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Re-sources Laboratory , Silver Spring , MD .  

  11. Finlayson-Pitts , B. J. and Pitts , J. N . 2000. Chemical composition of tropospheric aerosols. In: Chemistry of the Upper and Lower Atmo-sphere. Academic Press, New York, Chapter 9.  

  12. Ganzeveld , L. , Lelieveld , J. and Roelofs , G.-J . 1998 . A dry deposition pa-rameterization for sulfur oxides in a chemistry and general circulation model . J. Geophys. Res . 103 , 5679 – 5694 .  

  13. Gershenzon , M. , Davidovits , P. , Jayne , J. T. , Kolb , C. E. and Worsnop , D. R . 2001 . Simultaneous uptake of DMS and ozone on water . J. Phys. Chem . 105A , 7031 – 7036 .  

  14. Ghosal , S. , Shbeeb , A. and J. C. Hemminger , 2000 . Surface segrega-tion of bromine in bromide doped NaCI: implications for the sea-sonal variations in Arctic ozone . Geophys. Res. Lett . 27 , 1879 – 1882 .  

  15. Hall , J. S. and Wolff , E. W . 1998 . Causes of seasonal and daily variations in aerosol sea-salt concentrations at a coastal Antarctic station . Atmos. Environ . 32 , 3669 – 3677 .  

  16. Hara , K. , Kikuchi , T. , Furuya , K. , Hayashi , M. and Fujii , Y . 1995 . Char-acterization of Antarctic aerosol particles using laser microprobe mass spectrometry . Environ. Sci. Technol . 30 ( 2 ), 385 – 391 .  

  17. Hara , K. , Osada , K. , Hayashi , M. , Matsunaga , K. , Shibata , T. and co-authors 1999. Fractionation of inorganic nitrates in winter Arctic troposphere—coarse aerosol particles containing inorganic nitrates. J. Geophys. Res . 104 , 23671 – 23679.  

  18. Hara , K. , Osada , K. , Kido , M. , Hayashi , M. , Matsunaga , K. and co-authors 2004. Chemistry of sea-salt particles and inorganic halo-gen species in the Antarctic regions: compositional differences be-tween coastal and inland stations. J. Geophys. Res . 109 , D20208, https://doi.org/10.1029/2004JD004713 .  

  19. Hara , K. , Osada , K. , Matsunaga , K. , Iwasalca , Y. , Sakai , T. and co-author 2002b. Concentration trends and mixing states of particulate oxalate in Arctic boundary layer in winter/spring. J. Geophys. Res . 107 ( D19 ), 4399, https://doi.org/10.1029/2001JD001584 .  

  20. Hara , K. , Osada , K. , Matsunaga , K. , Iwasalca , Y. , Shibata , T. and co-author 2002c. Inorganic chlorine and bromine species in winter Arctic troposphere. J. Geophys. Res . 107 ( D18 ), 4361, https://doi.org/10.1029/2001JD001008 .  

  21. Hara , K. , Osada , K. , Nishita , C. , Yamagata , S. , Yamanocuhi , T. and co-authors 2002a. Vertical variations of sea-salt modification in the boundary layer of spring Arctic during the ASTAR 2000 campaign. Tellus 54, 361 – 376.  

  22. Ibrahim , M. , Barrie , L. A. and Fanaki , F . 1983 . An experimental and theoretical investigation of the dry deposition of particles to snow, pine trees and artificial collectors . Atmos. Environ . 4 , 781 – 788 .  

  23. Iizuka , Y. , Fujii , Y. , Hirasawa , N. , Suzuki , T. , Motoyama , H. and co-authors 2004. SO i— minimum in summer snow layer at Dome Fuji, Antarctica, and the probable mechanism. J. Geophys. Res . 109 , D04307, https://doi.org/10.1029/2003JDO04138 .  

  24. Iwai , K. , Ono , A. and Ito , T . 1981 . On the composition and origin of large and giant particles observed at Syowa station, Antarctica . Mem. NIPR Spec. Issue 19 , 131 – 140 .  

  25. Jefferson , A. , Eisele , E L. , Ziemann , P. J. , Weber , R. J. , Marti , J. J. and co-author 1997. Measurements of the H2504 mass accommodation coefficient onto polydisperse aerosol. J. Geophys. Res . 102 , 19021-16 932.  

  26. Jefferson , A. , Tanner , D. J. , Eisele , E L. and Berresheim , H . 1998a . Sources and sinks of H2504 in the remote Antarctic marine boundary layer . J. Geophys. Res . 103 , 1639 – 1645 .  

  27. Jefferson , A. , Tanner , D. J. , Eisele , F. L. , Davis , D. D. , Chen , G. and co-authors 1998b. OH photochemistry and methane sulfonic acid for-mation in the coastal Antarctic boundary layer . J. Geophys. Res . 103 , 1647– 1656 .  

  28. Johansson , C. and Granat , L . 1986 . An experimental study of the dry deposition of gaseous nitric acid to snow . Atmos. Environ . 20 , 1165 – 1170 .  

  29. Jourdain , B. and Legrand , M . 2001 . Seasonal variations of atmospheric dimethylsulfide, dimethylsulfoxide, sulfur dioxide, methanesulfonate, and non-sea-salt sulfate aerosols at Dumont d'Urville (coastal Antarc-tica) (December 1998 to July 1999) . J. Geophys. Res . 106 ( D13 ), 14391 – 14408 , https://doi.org/10.1029/2000JD900841 .  

  30. Jourdain , B. and Legrand , M . 2002 . Year-round records of bulk and size segregated aerosol composition and HC1 and HNO3 levels in the Dumont d'Urville (coastal Antarctica) atmosphere: implication for sea-salt aerosol fractionation in the winter and summer . J. Geophys. Res . 107 ( D22 ), 4645 , https://doi.org/10.1029/2002JD002471 .  

  31. Kerminen , V.-M. and Leck , C . 2001 . Sulfur chemistry over the cen-tral Arctic Ocean during the summer: gas-to-particle transformation . J. Geophys. Res . 106 , 32 087-32 099 .  

  32. Kerminen , V.-M. , Teinild , K. and Hillamo , R . 2000 . Chemistry of sea-salt particles in the summer Antarctic atmosphere . Atmos. Environ . 34 , 2817 – 2825 .  

  33. Legrand , M. , Ducroz , F. , Wagenbach , D. , Mulvaney , R. and Hall , J . 1998b . Ammonium in coastal Antarctic aerosol and snow: role of polar ocean and penguin colony . J. Geophys. Res . 103 , 11 043 – 11056 .  

  34. Legrand , M. and Pasteur , E. C. , 1998a . Methane sulfonic acid to non-sea-salt sulfate ratio in coastal Antarctic aerosol and surface snow . J. Geophys. Res . 103 , 10 991-11 006 .  

  35. McInnes , L. M. , Covert , D. S. , Quinn , P. K. and Germani , M. S . 1994 . Measurements of chloride depletion and sulfur enrichment in indi-vidual sea-salt particles collected from the remote marine boundary layer . J. Geophys. Res . 99 , 8257 – 8268 .  

  36. Marion , G. M. , Farren , R. E. and Komrowslci , A. J . 1999 . Alternative pathways for seawater freezing , Cold Region Sci. Technol . 29 , 259 – 266 .  

  37. Minilcin , A. , Legrand , M. , Hall , J. , Wagenbach , D. , Kleefeld , C. and co-authors 1998. Sulfur-containing species (sulfate and methanesul-fonate) in coastal Antarctic aerosol and precipitation. J. Geophys. Res . 103 , 10975 – 10990.  

  38. Moore , J. K. and Abbott , M. R . 2002 . Surface chlorophyll concentrations in relation to the Antarctic Polar Front: seasonal and spatial patterns from satellite observations . J. Mar Sysl 37 , 69 – 86 .  

  39. Mouri , H. , Nagao , I. , Okada , K. , Koga , S. and Tanaka , H . 1997 . Ele-mental compositions of individual aerosol particles collected over the southern ocean: a case study . Atmos. Res . 43 , 183 – 195 .  

  40. Mouri , H. , Nagao , I. , Okada , K. , Koga , S. and Tanaka , H . 1999 . Individual-particle analyses of coastal Antarctic aerosols . Tellus 51B , 603 – 611 .  

  41. Murphy , D. M. , Anderson , J. R. , Quinn , P. K. , McInnes , L. M. , Brechtel , F. J. and co-authors 1998. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature 392, 62 – 65.  

  42. Osada , K. , Hara , K. , Kido , M. , Kai , H. , Yamanouchi , T. and co-authors 2001. Sulfate depletion in snow over sea ice near Syowa station, Antarctica in relation to the origin of sulfate depleted sea-salt aerosol particles in winter. Polar Meteorol. Glaciol. 15, 21 – 31.  

  43. Osada , K. , Hayashi , M. , Ui , H. and Iwasalca , Y . 1998 . Ionic constituents in aerosol particles at Syowa station, east Antarctica, during 1998 . Polar Meteorol. Glaciol . 12 , 49 – 57 .  

  44. Pardess , D. , Levin , Z. and Ganor , E . 1992 . A new method for measuring the mass of sulfur in single aerosol particles . Atmos Environ . 26 , 675 – 680 .  

  45. Parungo , D. P. , Nagamoto , C. T. , Madel , R. , Rosinski , J. and Haagenson , P. L . 1987 . Marine aerosols in Pacific upwelling regions. J. Aerosol Sc i . 18 , 277 – 290 .  

  46. Pruppacher , H. R. and Klett , J. D . 1978. Equilibrium between water vapor, water, aqueous solutions and ice in bulk. In: Microphysics of Clouds and Precipitation, Chapter 4. Reidel, Dordrecht.  

  47. Quinn , P. K. , Bates , T. S. , Coffman , D. J. , Johnson , J. E. , Harris , J. M. and co-authors 2000. Surface submicron aerosol chemical composition: what fraction is not sulfate? . J. Geophys. Res . 105 ( D5 ), 6785-6805 .  

  48. Quinn , P. K. , Kapustin , V. N. , Bates , T. S. and Covert , D. S . 1996 . Chem-ical and optical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport . J. Geophys. Res . 101 ( D3 ), 6931 – 6951 .  

  49. Rankin , A. M. and Wolff , E. W . 2003 . A year-long record of size-segregated aerosol composition at Halley, Antarctica . J. Geophys. Res . 108 ( D24 ), 4775 , https://doi.org/10.1029/2003JD003993 .  

  50. Richardson , C . 1976 . Phase relationships in sea ice as a function of temperature . J. Glaciol . 17 , 507 – 519 .  

  51. Sander , R . 1999. Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chem-istry ( http : //www.mpch-mainz.mpg.de/-sander/) .  

  52. Seinfeld , J. and Pandis , S. N . 1998 . Atmospheric Chemistry and Physics from Air Pollution to Climate Change . Wiley-Interscience , New York .  

  53. Sheridan , P. J. , Schnell , R. C. , Kahl , J. D. , Boatman , J. F. and Garvey , D. M . 1993 . Microanalysis of the aerosol collected over south-central New Mexico during the alive field experiment, May-December 1989 . Atmos. Environ . 27 , 1169 – 1183 .  

  54. Sievering , H. , Boatman , J. , Gorman , E. , Kim , Y. , Anderson , L. and co-authors 1992. Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols. Nature 360, 571 – 573.  

  55. Teinilä , K. , Kerminen , V.-M. and Hillamo , R . 2000 . A study of size-segregated aerosol chemistry in the Antarctic atmosphere . J. Geophys. Res . 105 , 3893 – 3904 .  

  56. Wagenbach , D. , Ducroz , F. , Mulvaney , R. , Keck , L. , Minikin , A. and co-authors 1998. Sea-salt aerosol in coastal Antarctic regions. J. Geophys. Res . 103 , 10961 – 10974.  

  57. Wilson , T. R . 1975. Salinity and the major elements of sea-water. In: Chemical Oceanography (eds J. P. Riley and G. Slcirrow). Academic Press, San Diego, CA, 365 – 413  

  58. Wouters , L. , Artaxo , P. and van Grieken , R . 1990 . Laser microprobe mass analysis of individual Antarctic aerosol particles . Int. J. Environ. Anal. Chem . 38 , 427 – 438 .  

  59. Yamanouchi , T. , Wada , M. , Fukatsu , T. , Hayashi , M. , Osada , K. and co-authors 1999. Airborne observation of water vapor and aerosols along Mizuho route, Antarctica. Polar Meteorol. Glaciol. 13, 22 – 37.  

comments powered by Disqus