Start Submission Become a Reviewer

Reading: Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study

Download

A- A+
Alt. Display

Original Research Papers

Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study

Authors:

T. Yamanouchi ,

National Institute of Polar Research (NIPR), JP
X close

R. Treffeisen,

Alfred Wegener Institute for Polar and Marine Research Potsdam, DE
X close

A. Herber,

Alfred Wegener Institute for Polar and Marine Research (AWI), DE
X close

M. Shiobara,

National Institute of Polar Research (NIPR), JP
X close

S. Yamagata,

Hokkaido University, Graduate School of Engineering, JP
X close

K. Hara,

National Institute of Polar Research (NIPR), JP
X close

K. Sato,

National Institute of Polar Research (NIPR), JP
X close

M. Yabuki,

National Institute of Polar Research (NIPR), JP
X close

Y. Tomikawa,

National Institute of Polar Research (NIPR), JP
X close

A. Rinke,

Alfred Wegener Institute for Polar and Marine Research Potsdam, DE
X close

R. Neuber,

Alfred Wegener Institute for Polar and Marine Research Potsdam, DE
X close

R. Schumachter,

Forschungsgesellschaft für Angewandte Naturwissenschaften, DE
X close

M. Kriews,

Alfred Wegener Institute for Polar and Marine Research (AWI), DE
X close

J . Ström,

Institute for Applied Environmental Research, Stockholm University, SE
X close

O. Schrems,

Alfred Wegener Institute for Polar and Marine Research (AWI), DE
X close

H. Gernandt

Alfred Wegener Institute for Polar and Marine Research (AWI), DE
X close

Abstract

The ASTAR 2000 (Arctic Study of Tropospheric Aerosol and Radiation) campaign ran from 12 March until 25 April 2000 with extensive flight operations in the vicinity of Svalbard (Norway) from Longyearbyen airport (78.25°N, 15.49°E). It was a joint Japanese (NIPR Tokyo)–German (AWI Bremerhaven/Potsdam) airborne measurement campaign using AWI aircraft POLAR 4 (Dornier 228-101). Simultaneous ground-based measurements were done at the international research site Ny-Ålesund (78.95°N, 11.93°E) in Svalbard, at the German Koldewey station, at the Japanese Rabben station and at the Scandinavian station at Zeppelin Mountain (475 m above sea level). During the campaign 19 profiles of various aerosol properties were measured. In general, the Arctic spring aerosol in the vicinity of Svalbard had significant temporal and vertical variability.

A strong haze event occurred between 21 and 25 March in which the optical depth from ground-based observation was 0.18, which was significantly greater than the background value of 0.06. Airborne measurements on 23 March during this haze event showed a high aerosol layer with an extinction coefficient of 0.03 km−1 or more up to 3 km and a scattering coefficient from 0.02 in the same altitude range. From the chemical analyses of airborne measurements, sulfate, soot and sea salt particles were dominant, and there was a high mixing ratio of external soot particles in some layers during the haze event, whereas internal mixing of soot in sulfate was noticeable in some layers for the background condition. We argue that the high aerosol loading is due to direct transport from anthropogenic source regions. In this paper we focus on the course of the haze event in detail through analyses of the airborne and ground-based results.

How to Cite: Yamanouchi, T., Treffeisen, R., Herber, A., Shiobara, M., Yamagata, S., Hara, K., Sato, K., Yabuki, M., Tomikawa, Y., Rinke, A., Neuber, R., Schumachter, R., Kriews, M., Ström, J., Schrems, O. and Gernandt, H., 2005. Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study. Tellus B: Chemical and Physical Meteorology, 57(2), pp.141–152. DOI: http://doi.org/10.3402/tellusb.v57i2.16784
1
Views
  Published on 01 Jan 2005
 Accepted on 11 Nov 2004            Submitted on 7 Jan 2004

References

  1. Anderson , T. L. , Covert , D. S. , Marshall , S. F. , Laukcs , M. L. , Charlons , R. J. and co-authors. 1996. Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer. J. Atmos. Ocean. Technol. 13, 967 – 986.  

  2. Ansmann , A. , Riebesell , M. and Weitkamp , C . 1990 . Measurement of atmospheric aerosol extinction profiles with a Raman lidar . Opt. Lett . 15 , 746 – 748 .  

  3. Bodhaine , B. A. and Dutton , E.G . 1993 . A long-term decrease in Arctic-haze at Barrow, Alaska . Geophys. Res. Lett . 20 , 947 – 950 .  

  4. Bond , T. , Anderson , T. and Campbell , D . 1999 . Calibration and inter-comparison of filter-based measurements of visible light absorption by aerosols . Aerosol Sci. TechnoL 30 , 582 – 600 .  

  5. Chapman , W. L. and Walsh , J. E . 1993 . Recent variations of sea ice and air temperature in high latitudes . Bull. Am. MeteoroL Soc . 74 , 33 – 47 .  

  6. Clarke , A. D . 1989 . In-situ measurements of the aerosol size distribu-tions, physicochemistry and light absorption properties of Arctic haze . J. Atmos. Chem . 9 , 255 – 266 .  

  7. Clarke , A. D. , Charlson , R. J. and Radke , L. F . 1984 . Airborne observa-tions of Arctic aerosol, IV: Optical properties of Arctic haze . Geophys. Res. Let . 11 , 405 – 408 .  

  8. Dethloff , K. , Rinke , A. , Lehmann , R. , Christensen , J. H. , Botzet , M. and co-authors. 1996. Regional climate model of the Arctic atmosphere. J. Geophys. Res . 101 , 23401 – 23422.  

  9. Eneroth , K. , Kjellström , E. and Holmen , K . 2003 . A trajectory clima-tology for Svalbard; investigating how atmospheric flow patterns in-fluence observed tracer concentrations . Phys. Chem. Earth 28 , 1191 – 1203 .  

  10. Engardt , M. and Holmen , K . 1999 . Model simulations of anthropogenic CO2-transport to an Arctic monitoring station during winter . Taus 51B , 194 – 209 .  

  11. Hara , K. , Osada , K. , Nishita , C. , Yamagata , S. , Yamanouchi , T. and co-authors. 2002. Vertical variations of sea-salt modification in the boundary layer of spring Arctic during the ASTAR 2000 campaign. Tellus 54B, 361 – 376  

  12. Hara , K. , Yamagata , S. , Yamanouchi , T. , Sato , K. , Herber , A. and co-authors. 2003. Mixing states of individual aerosol particles in spring Arctic troposphere during ASTAR 2000 campaign. J. Geophys. Res . 108(D7) 4209, https://doi.org/10.1029/2002JD002513 .  

  13. Hegg , D. A. , Covert , D. S. , Rood , M. J. and Hobbs , P. V . 1996 . Mea-surements of aerosol optical properties in marine air . J. Geophys. Res. 101(D8) , 12 893-12 903 .  

  14. Heintzenberg , J . 1989 . Arctic haze: air pollution in the Polar regions . Ambio 18 , 50 – 55 .  

  15. Heintzenberg , J. and Lack , C . 1994 . Seasonal variation of the atmo-spheric aerosol near the top of the marine boundary layer over Spitzbergen related to the Arctic sulphur cycle . Tellus 46B , 52 – 67 .  

  16. Herber , A. , Thomason , L. W. , Gernandt , H. , Leiterer , U. , Nagel , D. and co-authors. 2002. Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J. Geophys. Res . 107 ( D10 ), https://doi.org/10.1029/2001JD000536 .  

  17. Hoff , A . 2000. Final Report of Aircraft Services-ASTAR'2000, Aero-data, Braunschweig.  

  18. IPCC 2001. Climate Change: The Scientific Basis, 2001. Cambridge University Press, New York.  

  19. Iversen , T. and Joranger , E . 1985 . Arctic air pollution and large-scale atmospheric flow . Atmos. Environ . 19 , 2099 – 2108 .  

  20. Jokinen , V. and Mäkeld , J. M . 1997 . Closed-loop arrangements with critical orifice for DMA sheath/excess flow system. J. Aerosol Sc i . 28 , 643 – 648 .  

  21. Knutson , E. O. and Whitby , K. T . 1975 . Aerosol classification by electric mobility: apparatus, theory and applications. J. Aerosol Sc i . 6 , 443 – 451 .  

  22. Kriews , M. and Schrems , O . 1998 . Aerosol sampling depending on pre-cipitation at Spitsbergen. J. Aerosol Sc i . 29 , 685 – 686 .  

  23. Luedke , C. , Hoffmann , E. , Skole , J. and Kriews , M . 1999 . Determina-tion of trace metals in size fractionated particles from Arctic air by electrothermal vaporization inductively coupled plasma mass spec-trometry . J. Anal. At. Spectrom . 14 , 1685 – 1690 .  

  24. Myhre , G. , Stordal , F. , Restad , K. and Isalcsen , I . 1998 . Estimation of the direct radiative forcing due to sulfate and soot aerosols . Taus 50B , 463 – 477 .  

  25. Nagel , D. , Herber , A. , Thomason , L. W. and Leiterer , U . 1998 . Vertical distribution of the spectral aerosol optical depth in the Arctic from 1993 to 1996 . J. Geophys. Res . 103 , 1857 – 1870 .  

  26. Nakajima , T. , Tonna , G. , Rao , R. , Boi , P. , Kaufman , Y. and co-authors. 1996. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. AppL Opt . 35 , 2672 – 2686 .  

  27. Raatz , W. E . 1991 . The climatology and meteorology of Arctic air pollu-tion . In: Pollution of the Arctic Atmosphere (ed. W. T. Sturges ). Elsvier Science , New York , 13 – 42 .  

  28. Radke , L. F. , Lyons , J. H. , Hegg , D. A. and Hobbs , P. V . 1984 . Air-borne observation of Arctic aerosol, I: Characteristic of Arctic haze . Geophys. Res. Lett . 11 , 393 – 396 .  

  29. Rothrock , D. A. , Yu , Y. and Maykut , G. A . 1999 . Thinning of the Arctic sea-ice cover . Geophys. Res. Lett . 26 , 3469 – 3472 .  

  30. Schnell , R. C . 1984 . Arctic haze and the Arctic Gas and Aerosol Sampling Program (AGASP) . Geophys. Res. Lett . 11 , 361 – 364 .  

  31. Schumacher , R. , Neuber , R. , Herber , A. , Rairoux , P. and Schrems , O . 2000. Extinction profiles measured with a Raman Lidar in the Arctic troposphere. In: Advances in Laser Remote Sensing-Selected Papers, Presented at the 20th ILRC, Vichy, France 10-14th July 2000 (eds A. Dabas, C. Loth, and J. Pelon). Ecole Polytechnique, Palaiseau, 229 – 232  

  32. Shaw , G. E . 1982 . Atmospheric turbidity in the Polar regions . J. Appl. MeteoroL 21 , 1080 – 1088 .  

  33. Serreze , M. C. , Walsh , J. E. , Chapin , F. S. BI , Osterkamp , T. , Dyurgerov , M. et al. 2000 . Observational evidence of recent change in the northern high-latitude environment . Clim. Change 46 , 159 – 207 .  

  34. Shiobara , M . 2000. Arctic cloud and aerosol observations using a micro-pulse Lidar in Svalbard. Proc. 1st International Workshop on Space-borne Cloud Profiling Radar Tsukuba, 24-26 January 2000, Communications Research Laboratory, Kashima, Japan, 179 – 182  

  35. Spinhirne , J. D . 1993 . Micro pulse Lidar . IEEE Trans. Geosci. Remote Sens . 31 , 48 – 54 .  

  36. Ström , J. , Umegard , J. , Toseth , K. , Turnved , P. , Hansson , H.-C. and co-authors. 2003. One year observation of particle size distribution and aerosol chemical composition at the Zeppelin Station, Svalbard, March 2000—March 2001. Phys. Chem. Earth. 28, 1181 – 1190.  

  37. Thomason , L. W. , Herber , A. , Yamanouchi , T. , Sato , K. and Burton , S. P . 2003. Arctic Study on Tropospheric Aerosol and Radiation: comparison of tropospheric aerosol extinction profiles measured by airborne photometer and SAGE IL Gephys. Res. Lett. 30 ( 6 ), 1328, https://doi.org/10.1029/2002GL016453 .  

  38. Treffeisen , R. , Herber , A. , Strom , J. , Shiobara , M. , Yamanouchi , T. and co-authors. 2004. Interpretation of Arctic aerosol properties using cluster analysis applied to observations in the Svalbard area. Tellus 56B, 457 – 476  

  39. Walsh , J. E. and Chapmann , W. L . 1998 . Arctic cloud-radiation-temperature associations in observational data and atmospheric re-analyses . J. Clim . 11 , 3030 – 3045 .  

  40. Wang , P. H. , Kent , D. G. S. , Veiga , R. E. , Yue , G. K. , Poole , L. R. and co-authors. 1999. A method for identifying the aerosol-only mode of SAGE II 1.02-µm extinction coefficient data at altitudes below 6.5 km. J. Geophys. Res . 104 , 9609 – 9615 .  

  41. Weller , M. , Schulz , E. , Leiterer , U. , Naebert , T. , Herber , A. and co-authors. 1998. Ten years of aerosol optical depth observation at the Lindenberg Meteorological Observatory. Contrib. Atmos. Phys. 71, 387 – 400.  

comments powered by Disqus