Start Submission Become a Reviewer

Reading: The effect of wind speed products and wind speed–gas exchange relationships on interannual v...

Download

A- A+
Alt. Display

Original Research Papers

The effect of wind speed products and wind speed–gas exchange relationships on interannual variability of the air–sea CO2 gas transfer velocity

Authors:

Are Olsen ,

Geophysical Institute, University of Bergen; Also at Bjerknes Centre for Climate Research, NO
X close

Rik Wanninkhof,

NOAA Atlantic Oceanographic and Meteorological Laboratory, US
X close

Joaquin A. Triñanes,

Technological Research Institute, University of Santiago de Compostela, ES
X close

Truls Johannessen

Geophysical Institute, University of Bergen; Also at Bjerknes Centre for Climate Research, NO
X close

Abstract

The lack of a firm relationship between wind speed (U10) and gas transfer velocity (k) is considered to be one of the factors that hinders accurate quantification of interannual variations of ocean—atmosphere CO2 fluxes. In this paper the interannual variations of k of using four different k—U10 parametrizations are examined using wind speed data from the NCEP/NCAR reanalysis project. The extent to which interannual variations are faithfully reproduced in the NCEP/NCAR data is also investigated. This is carried out through comparison with QuikSCAT data. Compared with 4 yr of QuikSCAT data, NCEP/NCAR data reproduce interannual k variations, although the absolute magnitude of k is underestimated. Interannual k variation shows great sensitivity to selection of k—U10parametrization, and in the Westerlies it changes by a factor of three depending on k—U10 parametrization. Use of monthly mean winds speeds leads to overestimation of interannual k variations compared with k variations computed using 6-hourly wind speeds and the appropriate k—U10 parametrization. Even though the effect of changing k—U10 parametrization is large enough to be an issue that needs to be considered when computing interannual air—sea CO2 flux variations through combining estimates of k with data for the air—sea CO2 gradient, it is not sufficient to bridge the gap between such estimates and estimates based on analyses of atmospheric oxygen, CO2 and δ13C data. Finally it is shown that the ambiguity in the relationship between wind speed and k introduces an uncertainty in interannual flux variations comparable to a bias of interannual ΔpCO2 variations of at most ±5 µatm.

How to Cite: Olsen, A., Wanninkhof, R., Triñanes, J.A. and Johannessen, T., 2005. The effect of wind speed products and wind speed–gas exchange relationships on interannual variability of the air–sea CO2 gas transfer velocity. Tellus B: Chemical and Physical Meteorology, 57(2), pp.95–106. DOI: http://doi.org/10.3402/tellusb.v57i2.16777
  Published on 01 Jan 2005
 Accepted on 2 Sep 2004            Submitted on 5 Mar 2004

References

  1. Bates , N. R. , 2002. Interannual variability in the global uptake of CO2. Geophys. Res. Lett. 29, https://doi.org/10.1029/2001GL0013571 .  

  2. Battle , M. , Bender , M. L. , Tans , P. P. , White , J. W. S. , Ellis , J. T. et al. 2000 . Global carbon sinks and their variability inferred from atmospheric 02 and 313C . Science 287 , 2467 – 2470 .  

  3. Bousquet , R , Peylin , R , Ciais , R , Le Quere , C. , Friedlingstein , P. et al. 2000 . Regional changes in carbon dioxide fluxes of land and oceans since 1980 . Science 290 , 1342 – 1346 .  

  4. Boutin , J. , Etcheto , J. , Merlivat , L. and Rangama , Y . 2002. Influ-ence of gas exchange coefficient parameterization on seasonal and regional variability of CO2 air-ea fluxes. Geophys. Res. Lett. 29. https://doi.org/10.1029/2001GL013872 .  

  5. Carr , M.-E. , Tang , W. and Liu , W. T . 2002. CO2 exchange coef-ficients from remotely sensed wind speed measurements: SSM/I versus QuilcSCAT in 2000. Geophys. Res. Lett. 29, https://doi.org/10.1029/2002GL015068 .  

  6. Cayan , D. C . 1992 . Latent and sensible heat flux anomalies over the Northern Oceans: the connection to monthly atmospheric circulation . J. Clim . 5 , 354 – 369 .  

  7. Chelton , D. , Esbensen , S. K. , Schlax , M. G. , Thum , N. , Freilich , M. H. et al. 2001 . Observations of coupling between surface wind stress and sea surface temperature in the eastern Tropical Pacific . J. Clim . 14 , 1479 – 1498 .  

  8. Cosca , C. E. , Feely , R. A. , Boutin , J. , Etcheto , J. , McPhaden , M. J. et al. 2003. Seasonal and interannual CO2 fluxes for the central and eastern equatorial Pacific Ocean as determined from fCO2-SST relationships. J. Geophys. Res . 108 , https://doi.org/10.1029/2000JC000677 .  

  9. Etcheto , J. , Boutin , J. , Dandonneau , Y. , Bakker , D. C. E. , Feely , R. A. et al. 1999 . Air-sea CO2 flux variability in the equatorial Pacific Ocean near 100°W . Tellus 51B , 734 – 747 .  

  10. Feely , R. A. , Boutin , J. , Cosca , C. E. , Dandonneau , Y. , Etcheto , J. et al. 2002 . Seasonal and interannual variability of CO2 in the equatorial Pacific . Deep Sea Res. II , 49 , 2443 – 2469 .  

  11. Goswami , B. N. and Sengupta , D . 2003. A note on the deficiency of NCEP/NCAR reanalysis surface winds over the Indian Ocean. J. Geo-phys. Res. 108, https://doi.org/10.1029/2002JC001497 .  

  12. Gruber , N. , Keeling , C. D. and Bates , N. R . 2002 . Interannual variability in the North Atlantic carbon sink . Science 298 , 2374 – 2378 .  

  13. Kalnay , E. , Kanamitsu , M. , Kistler , R. , Collins , W. , Deaven , D. et al. 1996 . The NCEP/NCAR 40 year reanalysis project . B. Am. Meteorol. Soc . 77 , 437 – 471 .  

  14. Lee , K. , Wanninkhof , R. , Takahashi , T. , Doney , S. C. and Feely , R. A . 1998 . Low interannual variability in recent oceanic uptake of atmo-spheric carbon dioxide . Nature 396 , 155 – 159 .  

  15. Le Quéré , C. , Aumont , O. , Bopp , L. , Bousquet , P. , Ciais , P. et al. 2003 . Two decades of ocean CO2 sink and variability . Tellus 55B , 649 – 656 .  

  16. Le Quéré , C. , On , J. C. , Monfray , P. and Aumont , O . 2000 . Interannual variability of the oceanic sink of CO2 from 1979 through 1997 . Global Biogeochem. Cycles 14 , 1247 – 1265 .  

  17. Liss , P. S. and Merlivat , L . 1986. Air-sea gas exchange rates: introduction and synthesis. In: The role of air-sea exchange in geochemical cycling (ed.P. Buat-Menard). Riedel, Norwell, MA, 113 – 129  

  18. Louanchi , F. and Hoppema , M . 2000 . Interannual variations of the Antarctic Ocean CO2 uptake from 1986 to 1994 . Mar. Chem . 72 , 103 – 114 .  

  19. Marland , G. and Boden , T . 2001 . The increasing concentration of atmo-spheric CO2, how much, when and why? Erice International Seminar on Planetary Emergencies, 26th Session, Erice, Sicily, Italy, 19-24 August 2001 . Available online at http : //cdiac.ornl.gov/  

  20. Nelson , N. B. , Bates , N. R. , Siegel , D. A. and Michaels , A. F . 2001 . Spatial variability of the CO2 sink in the Sargasso Sea . Deep Sea Res . 11 48 , 1801 – 1821 .  

  21. Obata , A. and Kitamura , Y . 2003. Interannual variability of the air-sea exchange of CO2 from 1961 to 1998 simulated with a global ocean circulation-biogeochemistry model. J. Geophys. Res . 108. https://doi.org/10.1029/2001JC001088 .  

  22. Olsen , A. , Bellerby , R. G. J. , Johannessen , T. , Omar , A. M. and Skjelvan , I . 2003 . Interannual variability in the wintertime air-sea flux of carbon dioxide in the northern North Atlantic, 1981-2001 . Deep Sea Res. I 50 , 1323 – 1338 .  

  23. Olsen , A. , Triñanes , J. and Wanninkhof , R . 2004 . Sea-air flux of CO2 in the Caribbean Sea estimated using in situ and remote sensing data . Remote Sens. Environ . 89 , 309 – 325 .  

  24. Reynolds , R. and Smith , T . 1994 . Improved global sea surface tempera-ture analyses . J. Clim . 7 , 929 – 948 .  

  25. Ropelewslci , C. F. and Jones , P. D . 1987 . An extension of the Tahiti-Darwin Southern Oscillation Index. Mon . Weather Re v . 115 , 2161 – 2165 .  

  26. Smith , S. R. , Legler , D. M. and Verzone , V . 2001 . Quantifying uncer-tainties in NCEP reanalyses using high quality research vessel obser-vations . J. Clim . 14 , 4062 – 4072 .  

  27. Takahashi , T. , Sutherland , S. C. , Sweeney , C. , Poisson , A. , Metzl , N. et al. 2002 . Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects . Deep Sea Res . 11 49 , 1601 – 1622 .  

  28. Thompson , D. W. J. and Wallace , J. M. , 2000 . Annular modes in the extratropical circulation. Part I: month-to-month variability . J. Clim . 13 , 1000 – 1016 .  

  29. Van Loon , H. and Madden , R. A. 1981. The Southern Oscillation. Part I: Global associations with pressure and temperature in northern winter. Mon. Weather Rev . 109 , 1150 – 1162 .  

  30. Wanninkhof , R . 1992 . Relationship between wind speed and gas ex-change over the ocean . J. Geophys. Res . 97 , 7373 – 7382 .  

  31. Wanninkhof , R. , Doney , S. C. , Takahashi , T. and McGillis , W. R . 2002. The effect of using time-averaged winds on regional air-sea CO2 fluxes. In: Gas Transfer at Water Surfaces, American Geophysical Union Geophysical Monograph 127 (eds M. A. Donelan, W. M. Drennan, E. S. Saltzman and R. Wanninkhof). AGU, Washington, DC, 351 – 356  

  32. Wanninkhof , R. and McGillis , W. R . 1999 . A cubic relationship between air-sea CO2 exchange and wind speed . Geophys. Res. Lett . 26 , 1889 – 1892 .  

  33. Wentz , F. J. , Peteherych , S. and Thomas , L. A . 1984 . A model function for ocean radar cross sections at 14.6 GHz . J. Geophys. Res . 89 , 3689 – 3704 .  

comments powered by Disqus