Start Submission Become a Reviewer

Reading: The Arctic: a sink for mercury

Download

A- A+
Alt. Display

Original Research Papers

The Arctic: a sink for mercury

Authors:

Parisa A. Ariya ,

Departments of Atmospheric & Oceanic Sciences, and Chemistry McGill University, 801 Sherbrooke Street West, Montreal, PQ, H3A 2K6, CA
X close

Ashu P. Dastoor,

Meteorological Service of Canada, Environment Canada, 2121 Route Transcanadienne, Dorval, QC, CA
X close

Marc Amyot,

Département des sciences biologiques, Université de Montréal, 90 Vincent D’Indy, D-223, Montreal, PQ, H2V 2S9, CA
X close

William H. Schroeder,

Meteorological Service of Canada, Environment Canada, Toronto, Ontario, M3H 5T4, CA
X close

Leonard Barrie,

Environment Division, AREP, World Meteorological Organization, 7 bis, Avenue de la Paix, BP2300, 1211 Geneva 2, CH
X close

Kurt Anlauf,

Meteorological Service of Canada, Environment Canada, Toronto, Ontario, M3H 5T4, CA
X close

Farhad Raofie,

Departments of Atmospheric & Oceanic Sciences, and Chemistry McGill University, 801 Sherbrooke Street West, Montreal, PQ, H3A 2K6, CA
X close

Andrew Ryzhkov,

Departments of Atmospheric & Oceanic Sciences, and Chemistry McGill University, 801 Sherbrooke Street West, Montreal, PQ, H3A 2K6, CA
X close

Didier Davignon,

Meteorological Service of Canada, Environment Canada, 2121 Route Transcanadienne, Dorval, QC, CA
X close

Janick Lalonde,

Département des sciences biologiques, Université de Montréal, 90 Vincent D’Indy, D-223, Montreal, PQ, H2V 2S9, CA
X close

Alexandra Steffen

Meteorological Service of Canada, Environment Canada, Toronto, Ontario, M3H 5T4, CA
X close

Abstract

Mercury is a persistent, toxic and bio-accumulative pollutant of global interest. Its main mass in the troposphere is in the form of elemental gas-phase mercury. Rapid, near-complete depletion of mercury has been observed during spring in the atmospheric boundary layer of frozen marine areas in Arctic, sub-Arctic and Antarctic locations. It is strongly correlated with ozone depletion. To date, evidence has indicated strongly that chemistry involving halogen gases from surface sea-salt is the mechanism of this destruction. Precisely which halogen gases are the main players has remained unresolved. Our novel kinetic data and multiscale modelling show that Br atoms and BrO radicals are the most effective halogens driving mercury oxidation. The reduction of oxidized mercury deposited in the snow pack back to Hg0 and subsequent diffusion to the atmosphere is observed. However, it cannot compensate for the total deposition, and a net accumulation occurs. We use a unique global atmospheric mercury model to estimate that halogen-driven mercury depletion events result in a 44% increase in the net deposition of mercury to the Arctic. Over a 1-yr cycle, we estimate an accumulation of 325 tons of mercury in the Arctic.

How to Cite: Ariya, P.A., Dastoor, A.P., Amyot, M., Schroeder, W.H., Barrie, L., Anlauf, K., Raofie, F., Ryzhkov, A., Davignon, D., Lalonde, J. and Steffen, A., 2004. The Arctic: a sink for mercury. Tellus B: Chemical and Physical Meteorology, 56(5), pp.397–403. DOI: http://doi.org/10.3402/tellusb.v56i5.16458
1
Views
  Published on 01 Jan 2004
 Accepted on 13 Apr 2004            Submitted on 30 Oct 2003

References

  1. AMAP , 1998 . Arctic Pollution Issues: a State of the Arctic Environment Report . Arctic Monitoring and Assessment Programme , Oslo .  

  2. Amyot , M. , Lalonde , J. D. , Ariya , P. A. and Dastoor , A . 2003 . Behavior of mercury in snow from different latitudes . J. Phys. IV 107 , 45 – 49  

  3. Ariya , P. A. , Catoire , V , Sander , R. , Niki , H. and Harris , G. W . 1997 . Trichloroethene and tetrachloroethene: tropospheric probes for Cl-and Br-atom reactions during the polar sunrise . Tellus 49B , 583 – 591 .  

  4. Ariya , P. A. , Khalizov , A. and Gidas , A . 2002 . Reactions of gaseous mercury with atomic and molecular halogens . J. Phys. Chem. A 106 , 7310 – 7320 .  

  5. Ariya , P. A. and Ryzhkov , A . 2003 . Modeling of mercury in the Arctic . J. Physique IV 107 , 57 – 60 .  

  6. Agency for Toxic Substances and Disease Registry (ATSDR) 1999. ToxFAQs for Mercury. Agency for Toxic Substances and Dis-ease Registry, Division of Toxicology, Atlanta, GA. http://www. atsdr.cdc.gov/tfacts46.html  

  7. Barrie , L. A. , Bottenheim , J. W. , Schnell , R. C. , Crutzen , P. J. and Rasmussen , R. A . 1988 . Ozone destruction and photo-chemical re-actions at polar sunrise in the lower Arctic atmosphere . Nature 334 , 138 – 141 .  

  8. Barrie , L. and Platt , U . 1997 . Arctic tropospheric chemistry: an overview . Tellus 49B , 450 – 454 .  

  9. Calvert , J. G. and Lindberg , S. E . 2003 . A modeling study of the mech-anism of the halogen-ozone-mercury homogeneous reactions in the troposphere during the polar spring . Atmos. Environ . 37 ( 32 ), 4467 – 4481 .  

  10. Dastoor , A. P. and Larocque , Y . 2003 . Global circulation of atmospheric mercury: a modeling study . Atmos. Environ . 38 ( 1 ), 147 – 161 .  

  11. Domine, E and Shepson, P. B . 2002 . Air—snow interactions and atmospheric chemistry . Science 297 , 1506 – 1510 .  

  12. Ebinghaus , R. , Kock , H. H. , Temme , C. , Einax , J. W. , Lowe , A. G. et al. 2002 . Antarctic springtime depletion of atmospheric mercury . Environ. Sci. TechnoL 36 , 1238 – 1244 .  

  13. Foster , K. L. , Plastridge , R. A. , Bottenheim , J. W. , Shepson , P. B. , Finlayson-Pitts , B. J. et al. 2001 . The role of Br2 and BrC1 surface ozone destruction at polar sunrise . Science 291 , 471 – 474 .  

  14. Hall , B . 1995 . Reactions of ozone with mercury . Water Air Soil Pollut . 80 , 301 – 315 .  

  15. Jobson , B. T. , Nilci , H. , Yokouchi , Y. , Bottenheim , J. , Hopper , F. et al. 1994. Measurements of hydrocarbons during PSE 1992. Geophys. Res., Atmos. 99 , 23355 – 23368.  

  16. Lalonde, J. D., Amyot, M., Doyon, M. R. and Auclair, J. C. 2003. Photo-induced Hg(n) reduction in snow from the remote and temperate Experimental Lakes area (Ontario, Canada). J. geophys, Res. 108, 4200.  

  17. Lalonde , J. D. , Poulain , A. J. and Amyot , M . 2002 . The role of mercury redox reactions in snow on snow-to-air mercury transfer . Environ. Sci. TechnoL 36 , 174 – 178 .  

  18. Laurier , F. J. G. , Mason , R. P. , Whalin , L. and Kato , S . 2003 . Reac-tive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: a potential role of halogen chemistry . J. Geophys. Res . 108 ( D17 ), 4529 , https://doi.org/10.1029/2003JD003625 .  

  19. Lindberg , S. E. , Brooks , S. , Lin , C.-J. , Scott , K. J. , Landis , M. S. et al. 2002 . Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise . Environ. Sci. Technol . 36 , 1245 – 1256 .  

  20. Lindqvist , O. , and Rodhe , H . 1985 . Atmospheric mercury—a review . Tellus 37B , 136 .  

  21. Lu , J. Y. , Schroeder , W. H. , Barrie , L. A. , Steffen , A. , Welch , H. E. et al. 2001 . Magnification of atmospheric mercury deposition to po-lar regions in springtime: the link to tropospheric ozone depletion chemistry . Geophys. Res. Lett . 28 , 3219 – 3222 .  

  22. Müller , R. W. , Bovensmann , H. , Kaiser , J. W. , Richter , A. , Rozanov , A. et al. 2002 . Consistent interpretation of ground based and GOME BrO slant column data . Adv. Space Res . 29 , 1655 – 1660 .  

  23. Pal , B. and Ariya , P. A . 2004 . Kinetics and mechanism of 03-initiated reaction of Hg°: atmospheric implication . J. Phys. Chem. Chem. Phys . 6 , 572 – 579 .  

  24. Paterson , W. S. B. and Reeh , N . 2001 . Thinning of the ice sheet in northwest Greenland over the past forty years . Nature 414 , 60 – 62 .  

  25. P'yankov, V. A . 1949 . Zh. Obsch. Khim. (Russ. J . Gen. Chem. ) 19 , 224 – 229 .  

  26. Raofie , F. and Ariya , P. A . 2003 . Reactions of BrO with mercury: kinetic studies . J. Physique IV 107 , 1119 – 1121 .  

  27. Richter , A. , Wittrock , F. , Eisinger , M. and Burrows , J. P . 1998 . GOME observations of tropospheric BrO in Northern Hemispheric spring and summer 1997 . Geophys. Res. Lett . 25 , 2683 – 2686 .  

  28. Richter , A. , Wittrock , F. , Ladstätter-Weissenmayer , A. and Burrows , J. P . 2002 . GOME measurements of stratospheric and tropospheric BrO . Adv. Space Res . 29 , 1667 – 1672 .  

  29. Sander , R. , Vogt , R. , Harris , G. W. and Crutzen , P. J . 1997 . Modeling the chemistry of ozone, halogen compounds, and hydrocarbons in the arctic troposphere during spring . Tellus 49B , 522 – 532 .  

  30. Schroeder , W. H. , Keeler , G. , Kock , H. , Roussel , P. , Schneeberger , D. et al. 1995 . International field intercomparison of atmospheric mercury measurement methods . Water, Air Soil PolluL 80 , 611 – 620 .  

  31. Schroeder , W. H. , Anlauf , K. G. , Barrie , L. A. , Lu , J. Y. , Steffen , A. et al. 1998 . Arctic springtime depletion of mercury . Nature 394 , 331 – 332 .  

  32. Sommar , J. , Gardfeldt , K. , Stromberg , D. and Feng , X . 2001 . A ki-netic study of the gas-phase reaction between the hydroxyl radical and atomic mercury . Atmos. Environ . 35 , 3049 – 3054 .  

  33. Talcizawa , Y. and Osame , M. (Eds.), 2001 . Understanding of Minamata Disease: Methylmercuty poisoning in Minamata and Niigata, Japan . Japan Public Health Association , Tokyo .  

  34. Temme , C. , Einax , J. W. , Ebinghaus , R. and Schroeder , W. H . 2003 . Measurements of atmospheric mercury species at a coastal site in the Antarctic and over the south Atlantic Ocean during polar summer . Environ. Sci. TechnoL 37 ( 1 ), 22 – 31 .  

  35. van Roozendael , M. , Wagner , T. , Richter , A. , Pundt , I. , Arlander , D. W. et al. 2002 . Intercomparison of BrO measurements from ERS-2 GOME, ground-based and balloon platforms . Adv. Space Res . 29 , 1661 – 1666 .  

comments powered by Disqus