Start Submission Become a Reviewer

Reading: Retrieving the aerosol single-scattering albedo from the NO2 photolysis rate coefficient

Download

A- A+
Alt. Display

Original Research Papers

Retrieving the aerosol single-scattering albedo from the NO2 photolysis rate coefficient

Authors:

H. Randriamiarisoa ,

Laboratoire des Sciences du Climat et de l’Environnement/IPSL, UMR CEA-CNRS 1572, Orme des Merisiers Bât 709, 91191 Gif-sur-Yvette, FR
X close

P. Chazette,

Laboratoire des Sciences du Climat et de l’Environnement/IPSL, UMR CEA-CNRS 1572, Orme des Merisiers Bât 709, 91191 Gif-sur-Yvette, FR
X close

G. Megie

Service d’Aéronomie/IPSL, Paris VI, Tour 15, 5 ème étage, 4, place Jussieu, 75252 Paris, FR
X close

Abstract

A method for retrieving the aerosol single-scattering albedo ω0 in the ultraviolet region close to 400 nm within the atmospheric column is proposed based on a comparison between both NO2 photolysis rate coefficients JNO2 measured by an optical actinometer under cloud-free conditions and JNO2 calculated using a radiative transfer model. This methodology is based on the sensitivity of JNO2 to ω0 variations as quantified using the radiative transfer model with particular emphasis on the aerosol extinction vertical profile. The method has been applied to assess ω0 within the framework of the Indian Ocean Experiment (INDOEX) over the Goa area located on the west coast of India. In the first place, the period under study was between March 2 and March 13, 1999 when ground-based lidar measurements were available. It has been further extended between February 25 and March 23, 1999 by making appropriate assumptions on the mean altitude of the aerosol layer. Taking into account the uncertainties related to each parameter introduced in the calculation (optical thickness, Ångstróm coefficient, asymmetry factor, surface albedo) and the model used, resulted in a total absolute accuracy on ω0 calculated to be 0.06 for observations close to local noon, and up to 0.07 for observations performed within 3 h before and after local noon. Results are less accurate for other times. For the 12 days under study, the values of ω0 calculated at noon range from 0.89 to 0.93. They vary weakly throughout the day with further differences being observed from one day to another. Such small variations in ω0 are in very good agreement with results obtained by other methods within the framework of the same campaign.

How to Cite: Randriamiarisoa, H., Chazette, P. and Megie, G., 2004. Retrieving the aerosol single-scattering albedo from the NO2 photolysis rate coefficient. Tellus B: Chemical and Physical Meteorology, 56(2), pp.118–127. DOI: http://doi.org/10.3402/tellusb.v56i2.16408
  Published on 01 Jan 2004
 Accepted on 24 Sep 2003            Submitted on 11 Oct 2002

References

  1. Ackerman , P. T. and Toon , O. B . 1981 . Absorption of visible radiation in the atmosphere containing mixtures of absorbing and non-absorbing particles . Appl. Opt . 20 , 3661 – 3667 .  

  2. Ångström , A . 1964 . The parameters of atmospherics turbidity . Tellus 16 , 64 – 75 .  

  3. Castro , T. , Madronich , S. , Rivale , S. , Muhlia , A. and Mar , B . 2001 . The influence of aerosols on photochemical smog in Mexico city . Atmos. Environ . 35 , 1765 – 1772 .  

  4. Chazette , P . 2003 . Optical properties of the aerosol column observed during INDOEX at the coastal site of Goa . J. Geophys. Res . 108 ( D6 ), 4187 , https://doi.org/10.1029/2002JD002074 .  

  5. Chowdhury , Z. , Hughes , L. S. , Salmon , L. G. and Cass , G. R . 2001 . Atmospheric particle size and composition measurements to support light extinction calculations over the Indian Ocean . J. Geophys. Res . 106 , 28 597-28 606 .  

  6. Dickerson , R. R. , Kondragunta , S. , Stenchikov , G. , Civerolo , K. L. , Doddgridge , B. G. and Holben , B. N . 1997 . The impact of aerosols on solar ultraviolet radiation and photochemical smog . Science 278 , 827 – 830 .  

  7. Dubovik , O. , Smirnov , A. , Holben , B. N. , King , M. D. , Kaufman , Y. J. , Eck , T. F. and Slutsker , I . 2000 . Accuracy assessments of aerosol optical properties retrieved from aerobotic Network (AERONET) Sun and sky radiance measurements . J. Geophys. Res . 105 , 9791 – 9806 .  

  8. Hamonou , E. , Chazette , P. , Balis , D. , Dulac , F. , Schneider , X. , Galani , E. , Ancellet , G. and Papayannis , A . 1999 . Characterization of the vertical structure of Saharan dust export to the Mediterranean basin . J. Geophys. Res . 104 , 22 257-22 270 .  

  9. Hansen , J. E. , Sato , M. and Ruedy , R . 1997 . Radiative forcing and climate response . J. Geophys. Res . 102 , 6831 – 6864 .  

  10. Hansen , J. , Sato , M. , Ruedy , R. , Lacis , A. and Oinas , V . 2000 . Global warming in the twenty-first century: an alternative scenario . Proc. Natl. Acad. Sci., USA 97 , 9875 – 9880 .  

  11. IPCC 2001 . Climate change 2000: The scientific basis contribution of working group I to the Third Assessment Report of the Intergov-ernmental Panel on Climate Change . Cambridge University Press , Cambridge , 1 – 881 .  

  12. Jacobson , M . 1998 . Studying the effects of aerosols on vertical photoly-sis rate coefficient and temperature profiles over an urban airshed . J. Geophys. Res . 103 , 10 593-10 604 .  

  13. Lantz , K. O. , Shetter , R. E. , Cantrell , C. A. , Flocke , S. J. , Calvert , J. G. and Madronich , S . 1996 . Theoretical, actinometric, and radiomet-ric determinations of the photolysis rate coefficient of NO2 during MLOPEX 11 . J. Geophys. Res . 101 , 14 613-14 629 .  

  14. Lelieveld , J. , Crutzen , P. J. , Ramanathan , V , Andreae , M. O. , Bren-ninlcmeijer , C. , Campos , T. , Cass , G. R. , Dickerson , R. R. , Fischer , H. and De Gouw , J. A . 2001 . The Indian Ocean Experiment: widespread air pollution from South and Southeast Asia . Science 5506 , 1031 – 1035 .  

  15. Léon , J.-F. , Chazette , R , Dulac , F. , Pelon , J. , Flamant , C. , Bonazzola , M. , Foret , G. , Alfaro , S. C. , Cachier , H. and Cautenet , S . 2001 . Large scale advection of continental aerosols during INDOEX . J. Geophys. Res . 106 , 28 427-28 440 .  

  16. Léon , J.-F. , Chazette , P. , Pelon , J. , Dulac , F. and Randriamiarisoa , H . 2002 . Aerosol direct radiative impact over the INDOEX area based on passive and active remote sensing . J. Geophys. Res . 107 ( 019 ), 8006 , https://doi.org/10.1029/2000JD000116 .  

  17. Li , F. and Okada , K . 1999 . Diffusion and modification of marine aerosol particles over the coastal areas in China: a case study using a single particle analysis. J. Atmos. Sc i . 56 , 241 – 248 .  

  18. Madronich , S . 1987 . Photodissociation in the atmosphere 1. Actinic flux and effects of ground reflections and clouds . J. Geophys. Res . 92 , 9740 – 9752 .  

  19. Madronich , S. and Flocke , S . 1998 . The role of solar radiation in at-mospheric chemistry . In: Handbook Environmantal Chemistry (ed. P. Boule ). Springer-Verlag , Berlin , 1 – 26 .  

  20. Madronich , S. and Granier , C . 1992 . Impact of recent total ozone changes on tropospheric ozone photodissociation, hydroxyl radicals, and methane trends . Geophys. Res. Lett . 19 , 465 – 467 .  

  21. Moosmüller , H. , Arnott , W. P. , Rogers , C. F. , Chow , J. C. , Frazier , C. A. , Sherman , L. E. and Dietrich , D. L . 1998 . Photo-acoustic and filter measurements related to aerosol light absorption during the Northern Front Range Quality Study (Colorado 1996/1997) . J. Geophys. Res. Atmos . 103 , 28 749-28 157 .  

  22. Radke , L. E , Hegg , D. A. , Hobbs , P. V. , Nance , J. D. , Lyons , J. H. , Laursen , K. K. , Reagan , P. J. and Ward , D. E . 1991. Particulate and trace gas emission from large biomass fires in North America. Global Biomass Burning. MIT Press, Cambridge, MA, 209 – 224  

  23. Ramanathan , V , Crutzen , P. J. , Lelieveld , J. , Althausen , D. , Anderson , J. , Andreae , M. O. , Cantrell , W. , Cass , G. and Chung , C. E . 2001. The Indian Ocean Experiment: an integrated assessment of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res . 106,28 371-28 398.  

  24. Redeman , J. , Russel P. B. and Hamill , P . 2001 . Dependence of aerosol light absorption and single scattering albedo on ambient relative hu-midity for sulfate aerosols with black carbon cores . J. Geophys. Res . 106 , 27 485-27 495 .  

  25. Ross , J. L. and Hobbs , P. V . 1998 . Radiative characteristics of regional hazes dominated by smoke from biomass burning in Brazil: closure tests and direct radiative forcing . J. Geophys. Res . 103 , 31 925-31 991 .  

  26. Satheesh , S. K. , Ramanathan , V , Li-Jones , X. , Lobert , J. M. , Podgorny , I. A. , Prospero , J. M. , Holben , B. N. and Loeb , N. G . 1999 . A model for the natural anthropogenic aerosols over the tropical Indian Ocean derived from the Indian Ocean Experiment data . J. Geophys. Res . 104 , 27 421-27 440 .  

  27. Schwartz , S. E. and Buseck , P. R . 2000 . Absorbing phenomena . Science 288 , 989 – 990 .  

  28. Shetter , R. E. , McDaniel , A. H. , Cantrell , C. A. , Madronich , S. and Calvert , J. G . 1992 . Actinometer and Eppley radiometer measurements of the NO2 photolysis rate coefficient during MLOPEX . J. Geophys. Res . 97 , 10 349-10 359 .  

  29. Spinhirne , J. D . 1993 . Micropulse lidar. IEEE Trans . Geo. Rem. Sens . 31 , 48 – 55 .  

  30. Stamnes , K. , Tsay , S. , Wiscombe , W. J. and Jayaweera , K . 1988 . Numer-ically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media . Appl. Opt . 27 , 2502 – 2509 .  

  31. Takemura , T. , Nalcajima , T. , Dubovilc , O. , Holben , B. N. and Kinne , S . 2002 . Single scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model . J. Climate 15 , 333 – 352 .  

  32. Tanré , D. , Devaux , C. , Herman , M. and Santer , R . 1988 . Radiative prop-erties of desert aerosols by optical ground-based measurements at solar wavelengths . J. Geophys. Res . 93 , 14 223-14 231 .  

comments powered by Disqus