Start Submission Become a Reviewer

Reading: Reconstruction of summer droughts using tree-ring cellulose isotopes: a calibration study wi...

Download

A- A+
Alt. Display

Original Research Papers

Reconstruction of summer droughts using tree-ring cellulose isotopes: a calibration study with living oaks from Brittany (western France)

Authors:

G. Raffalli-Delerce,

Laboratoire des Sciences du Climat et de l’Environnement, IPSL/CEA-CNRS, Gif-sur-Yvette, FR
X close

V. Masson-Delmotte ,

Laboratoire des Sciences du Climat et de l’Environnement, IPSL/CEA-CNRS, Gif-sur-Yvette, FR
X close

J. L. Dupouey,

UMR Ecologie et Ecophysiologie forestière, INRA-Nancy, Champenoux, FR
X close

M. Stievenard,

Laboratoire des Sciences du Climat et de l’Environnement, IPSL/CEA-CNRS, Gif-sur-Yvette, FR
X close

N. Breda,

UMR Ecologie et Ecophysiologie forestière, INRA-Nancy, Champenoux, FR
X close

J. M. Moisselin

Météo France, Toulouse, FR
X close

Abstract

The aim of this study is to establish a calibration of the late wood cellulose carbon and oxygen isotopic inter-annual variability measured on four living oaks (1879–1998) in the Atlantic area (Rennes Forest, Brittany, western France) to meteorological (beginning in 1885) and hydrological (beginning in 1951) data. We find a better tree-to-tree consistency of the δ18O ratio, compared with that of the tree-to-tree variability of the ring width and the δ13C possibly affected by individual competition effects.

On a century-long time scale, the δ13C ratio in the cellulose reflects the globally decreasing trend of δ13C in atmospheric CO2, which is mainly due to fossil fuel burning. In contrast with the ring width, which here shows a weak and complex dependence on meteorological parameters, the isotopic composition of the cellulose enables a reliable reconstruction (R2 > 0.45), mainly due to the δ18O signal, of selected summer climatic parameters: relative humidity, soil moisture deficit and temperature. The reconstructed parameters capture both low-frequency variations and extreme dry years (summer droughts). While both summer temperature and annual mean precipitation have a long-term increasing trend, the reconstructed water stress indicators do not show a significant trend during the 20th century. On average one summer drought occurs every seven summers, but this frequency varies in parallel to decadal changes in mean summer temperature, with fewer droughts in the 1930s and 1960s–1970s and more droughts in the 1900s, 1940s and 1990s.

How to Cite: Raffalli-Delerce, G., Masson-Delmotte, V., Dupouey, J.L., Stievenard, M., Breda, N. and Moisselin, J.M., 2004. Reconstruction of summer droughts using tree-ring cellulose isotopes: a calibration study with living oaks from Brittany (western France). Tellus B: Chemical and Physical Meteorology, 56(2), pp.160–174. DOI: http://doi.org/10.3402/tellusb.v56i2.16405
  Published on 01 Jan 2004
 Accepted on 13 Jun 2003            Submitted on 16 Dec 2002

References

  1. Anderson , W. T. , Bernasconi , S. M. and McKenzie , J. A . 1998 . Oxy-gen and carb on isotopic record of the climate variability in tree ring cellulose (Picea abies): an example from central Switzerland . J. Geo-phys. Res . 103 , 31 625-31 636 .  

  2. Briffa , K. R. , Jones , P. D. and Hulme , M . 1994 . Summer moisture vari-ability across Europe, 1892-1991: an analysis based on the Palmer drought severity index . Int. J. Climatol . 14 , 475 – 506 .  

  3. Burk , R. L. and Stuiver , M . 1981 . Oxygen isotope ratios in trees reflect mean annual temperature and humidity . Science 211 , 1417 – 1419 .  

  4. DeNiro , M. J. and Epstein , S . 1979 . Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide and water . Science 204 , 51 – 53 .  

  5. Dubreuil , V. , Mounier , J. and Lejeune , C . 1998. The recent increase of summer water deficit in western France. PubL Assoc. InL Climatol. 11, 151-157 (in French).  

  6. Dupouey , J. L. , Leavitt , S. , Choisnel , E. and Jourdain , S . 1993 . Modelling carbon isotope fractionation in tree rings based on effective evapotran-spiration and soil water status . Plant Cell Environ . 16 , 939 – 947  

  7. Edwards , T. W. D. , Aravena , R. , Fritz , P. and Morgan , A. V . 1985 . Inter-preting paleoclimate from 180 and 2H in plant cellulose comparison with evidence from fossil insects and relict permafrost in south west-ern Ontario. Can. J. Earth Sc i . 22 , 1720 – 1726 .  

  8. Edwards , T. W. D. , Graf , W. , Trimborn , P. , Stichler , W. , Lipp , J. and Payer , H. D . 2000 . Delta C-13 response surface resolves humidity and temperature signals in trees . Gechem. Cosmochem. Acta 64 , 161 – 167 .  

  9. Epstein , S. and Krishnamurthy , R. V . 1990 . Environmental information in the isotopic record in trees . Phil. Trans. R. Soc. Lond. A 330 , 427 – 439 .  

  10. Farquhar , G. D. , Ehleringer , J. R. and Hubick , K. T . 1989 . Carbon isotope discrimination and photosynthesis . Annu. Rev. Plant PhysioL Plant MoL Biol . 40 , 503 – 537 .  

  11. Farquhar , G.D. , Henry , B. K. and Styles , J. M . 1997 . A rapid on-line tech-nique for determination of oxygen isotope composition of nitrogen-containing organic matter and water . J. Rapid Commun. Mass Spec-trom . 11 , 1554 – 1560 .  

  12. Francey , R. J. , Allison , C. E. , Etheridge , D. M. , Trudinger , C. M. , Enting , I. G. , Leuenberger , M. , Langenfelds , R. L. , Michel , E. and Steele , L. R , 1999 . A 1000 year high precision record of 313C in atmospheric CO2 . Tellus 51B , 170 – 193 .  

  13. Francey , R.J. and Farquhar , G. D . 1982 . An explanation of 13c/12c variations in tree rings . Nature 297 , 28 – 31 .  

  14. Francey , R. J. and co-authors, 1995. Changes in oceanic and terrestrial carbon uptake since 1982. Nature 373, 326 – 330.  

  15. Freyer , H. D. , 1979. On the 13C record in tree rings. Part 1. 13C Variations in northern hemispheric trees during the last 150 years. Tellus 31,124.-137.  

  16. Friedli , H. , Liitscher , H. , Oeschger , H. , Siegenthaler , U. and Stauffer , B . 1986 . Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries . Nature 324 , 237 – 238 .  

  17. Granier , A. , Breda , N. , Biron , P. and Villette , S . 1999 . Lumped water balance model to evaluate duration and intensity of drought constraints in forest stands . EcoL Model . 116 , 269 – 283 .  

  18. Green , J. W . 1963 . Wood cellulose . In: Method of Carbohydrate Chemistry (ed. R. L. Whistler ). Academic Press , New York .  

  19. Hemming , D. L. , Switsur , V. R. , Waterhouse , J. S. , Heaton , T. H. E. and Carter , A. H. C . 1998 . Climate variation and the stable carbon isotope composition of tree ring cellulose: an intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris . Tellus 50B , 25 – 33 .  

  20. Jaggi , M. , Saurer , M. , Fuhrer , J. and Siegwolf , R . 2002 . The relationship between the stable carbon isotope composition of needle bulk material, starch, and tree rings in Picea abies . Oecologia 131 , 325 – 332 .  

  21. Jouzel , J. , Vimeux , F. , Caillon , N. , Delaygue , G. , Hoffmann , G. , Masson , V , and Parrenin , E 2003 . Temperature reconstructions from Antarctic ice cores . J. Geophys. Res . 108 , 1029 – 1046 .  

  22. Kalnay , E. , Kanamitsu , M. , Kistler , W. C. R. , Deaven , D. , Gandin , L. , Iredell , M. , Saha , S. , White , G. , Woollen , J. , Zhu , Y. , Chelliah , M. , Ebisuzaki , W. , Higgins , W. , Janowiak , J. , Mo , K. C. , Ropelewski , C. , Wang , J. , Leetmaa , A. , Reynolds , R. , Jenne , R. and Joseph , D. 1996. The NCEP/NCAR 40-year reanalyses project. Bull. Am. Met. Soc. 77, 437 – 431  

  23. Keeling , C. D. , Whorf , T. P. , Wahlen , M. and Plicht , J. V. d. 1995 . In-terannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 . Nature 375 , 666 – 670 .  

  24. Koziet , J . 1997 . Isotope ratio mass spectrometric method for the online determination of oxygen-18 in organic matter . J. Mass Spectrom . 32 , 103 – 108 .  

  25. Leavitt , S. W. and Danzer , S. R . 1993 . Method for batch processing small wood samples to holocellulose for stable carbon isotope analy-sis . Anal. Chem . 65 , 87 – 89 .  

  26. Leavitt , S. W. and Long , A . 1989 . The atmospheric 313C record as derived from 56 Pinyon trees at 14 sites in the southwestern united states . Radiocarbon 31 , 469 – 474 .  

  27. Lebourgois , F . 1997 . Dendrochronological study of the 102 network stands . Departement des Recherches Techniques, Office National des Forêts , Fontainebleau , France (in French ).  

  28. Leuenberger , M. , Borella , S. , Stocker , T. , Saurer , M. , Siegwolf , R. , Schweingruber, E and Matyssek, R. 1998. Stable Isotopes in Tree Rings as Climate and Stress Indicators. ETH, Zurich, 200 pp.  

  29. Libby , L. M. , Pandolfi L. F. , Payton P. H. , Marshall , J. , Becker , B. and Giertz-Sienbenlist , V. 1976. Isotopic Tree Thermometers. Nature 261, 284 – 288.  

  30. Lipp , J. , Trimborn , R , Fritz , P. , Moser , H. , Becker , B. , and Frenzel , B 1991 . Stables isotopes in tree-ring cellulose and climatic change . Tellus 43B , 322 – 330 .  

  31. Lloyd-Hughes , B. and Saunders , M . 2002 . A drought climatology for Europe . Int. J. Climatol . 22 , 1571 – 1592 .  

  32. McCarroll , D. and Pawellek , F . 2001 . Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies . The Holocene 11 , 517 – 526 .  

  33. McDermott , F. , Matey , D. P. and Hawkesworth , C . 2001 . Centennial-scale holocene climate variability revealed by a high-resolution speleothem delta 0-18 record from SW Ireland . Science 294 ( 5545 ), 1328 – 1331 .  

  34. Moisselin , J. M. , Schneider , M. , Canellas , C. and Mestre , O . 2002. Cli-matic changes over France during the 20th century; a study of long-term homogenized data of temperature and rainfall. La Météorologie 38, 45-56 (in French).  

  35. Mook , W. G. , Koopmans , A. F. , Carter , A. E and Keeling , C. D . 1983 . Seasonal, latitudinal and secular variations in the abundance and iso-topic ratios of atmospheric carbon dioxide 1: Results from Land sta-tions . J. Geophys. Res . 88 , 10 915-10 933 .  

  36. Robertson , I. , Rolfe J. , Switsur , V. R. , Carter , A. H. C. , Hall , M. A. , Barker , A. C. , and Waterhouse , J. S . 1997a . Signal strength and climate relationships in the 13C/12C ratios of tree ring cellulose from oak in southwest Finland . Geophys. Res. Lett . 24 , 1487 – 1490 .  

  37. Robertson , I. , Waterhouse , J. S. , Barker , A. C. , Carter , A. H. C. and Switsur , V. R . 1997b . Signal strength and climate relationships in 13C/12C of tree ring cellulose from oak in east England . J. Geophys. Res . 102 , 19 507-19 516 .  

  38. Robertson , I. , Waterhouse , J. S. , Barker , A. C. , Carter, A. H. C. and Switsur, V. R. 2001. Oxygen isotope ratios of oak in east England: im-plications for reconstructing the isotopic composition of precipitation. Earth Planet. Sci. Lett. 191, 21 – 31.  

  39. Roden , J. S. and Ehleringer, J. E. 2000. Hydrogen and oxygen isotope ratios of tree ring cellulose from field-grown riparian trees. Oecologia 123, 481 – 489.  

  40. Roden , J. S., Lin, G. and Ehleringer, J. R. 2000. A mechanistic model for the interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 64, 21 – 35.  

  41. Rozanski , K. , Araguas-Araguas , L. and Gonfiantini , R . 1993 . Isotopic patterns in modern global precipitation . In: Climate Change in Con-tinental Isotopic Records (eds. K. L. L. P. K. Swart , J. McKenzie and S. Savin). AGU Geophys. Monogr , pp. 1 – 37 .  

  42. Santrock , J. , Studley , S. A. and Hayes , J. M. 1985. Isotopic analyses based on the mass spectrum of carbon dioxide. Anal. Chem. 57, 1444.-1448.  

  43. Saurer , M. , Aellen , K. and Siegwolf , R . 1997 . Correlating 313C and 3180 in cellulose of tree . Plant Cell Environ . 20 , 1543 – 1550 .  

  44. Saurer , M. , Cherubini , P. and Siegwolf , R . 2000 . Oxygen isotopes in tree rings ofAbies alba: the climatic significance of interdecadal variations . J. Geophys. Res . 105 , 12 461-12 470 .  

  45. Saurer , M. , Schweingruber , F. , Vaganov , E. A. , Shiyatov , S. G. and Siegwolf , R . 2002. Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys. Res. Lett. 29, 10-1- 10 – 4.  

  46. Saurer , M. K. , Siegenthaler , U. and Schweingruber , F . 1995 . The climate-carbon isotope relationship in tree rings and the significant of site conditions . Tellus 47B , 320 – 330 .  

  47. Sternberg , L. D. L. , DeNiro , M. J. and Savidge , R. 1986. Oxygen iso-tope exchange between metabolites and water during biochemical reactions leading to cellulose synthesis. Plant Physiology 82, 423 – 427.  

  48. Stuiver , M. , Burk , R. L. and Quay , P. D . 1984 . 13012C ratios in tree-rings and the transfer of biospheric carbon to the atmosphere . J. Geophys. Res . 89 , 11 731-11 748 .  

  49. Switsur , R. and Waterhouse , J. 1998. Stable isotopes in tree ring cellu-lose. In: Stable Isotopes (ed. E. H. Griffiths ). BIOS Scientific Publish-ing, Oxford, 303 – 321  

  50. Trolier , M. , White, J. W. C., Tans, P. P., Masarie, K. A. and Gemery, P. A. 1996. Monitoring the isotopic composition of atmospheric CO2: Mea-surement from the NOAA global air sampling network. J. Geophys. Res . 101 , 25897 – 25916.  

  51. von Grafenstein , U. , Erlenkeuser , E. , Muller , J. , Triemborn , P. and Alefs , J. 1996. A 200 year mid European air temperature record preserved in lake sediments: an extension of the d180p-air temperature relation in the past. Geochem. Cosmochim. Acta 60 , 4025 – 4036 .  

  52. Werner , R. A. , Kornexl , B. E. , Rossmann , A. and Schmidt , H. L . 1996 . On-line determination of d 180 values in organic substance . Anal. Chim. Acta 319 , 159 – 164 .  

  53. Wilson , A. T . 1978 . Pioneer agriculture explosion and CO2 levels in the atmosphere . Nature 273 , 40 – 41 .  

comments powered by Disqus