Start Submission Become a Reviewer

Reading: The dynamics of the North Atlantic carbon cycle and its relation to the temperature of the w...

Download

A- A+
Alt. Display

Original Research Papers

The dynamics of the North Atlantic carbon cycle and its relation to the temperature of the winter mixed layer

Author:

Göran Broström

Göteborg University, Earth Science Centre, Department of Oceanography, Box 460, S-405 30 Göteborg; Department of Meteorology, Stockholm University, S-106 91 Stockholm, SE
X close

Abstract

Property—property relationships between oceanic carbon species and physical parameters have been used extensively to extrapolate sparse measurements to larger areas. However, the physical processes behind the applied relationships are not always described, implying that uncertainties are introduced to the method. In this study, it is shown that the dynamical features of the North Atlantic carbon cycle can be condensed into a simple framework by focusing on the properties of the winter mixed layer and the equilibrium concentration of the system. The change in the equilibrium concentration between the Sargasso Sea and the Nordic seas is about 250 μmol kg−1, where 50 μmol kg−1 is due to the corrections from the annual cycles in sea surface temperature and biological production. A theoretical framework that focuses on the relation between variables and the temperature of the winter mixed layer is presented and analyzed in some detail using results from a general circulation model. The derived model predicts that there is a tight relation between the total dissolved inorganic carbon concentration and the temperature in the winter mixed layer, and such relation can indeed be found from the TTO/NAS expedition data. Furthermore, the analysis shows that the system is relatively close to the equilibrium concentration in the Sargasso Sea but that the system is highly undersaturated in the Nordic seas. Further, the analysis shows that both the entrainment of carbon-rich deep water and the air—sea flux of CO2 must be correctly accounted for to describe the system.

How to Cite: Broström, G., 2004. The dynamics of the North Atlantic carbon cycle and its relation to the temperature of the winter mixed layer. Tellus B: Chemical and Physical Meteorology, 56(1), pp.72–84. DOI: http://doi.org/10.3402/tellusb.v56i1.16401
  Published on 01 Jan 2004
 Accepted on 7 Jul 2003            Submitted on 22 May 2002

References

  1. Brewer , P. G. , Takahashi , T. and William's, R. T. 1986. Transient tracers in the ocean (TTO)-hydrographic data and carbon dioxide systems with revised carbon chemistry data. NDP-004/R1, Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, TN.  

  2. Broecker , W. S. and Peng , T.-H . 1982. Tracers in the sea. Eldigo Press, Lamont-Doherty Geological Observatory, Palisades, NY, 690 pp.  

  3. Broecker , W. S. , Takahashi , T. and Peng , T.-H . 1985. Reconstruction of past atmospheric CO2 contents from the chemistry of the contemporary ocean: an evaluation. DOE/OR.857, DOE Technical Report.  

  4. Broström , G . 1997 . Air-sea flux of CO2-can we short cut the annual cycle? A Norwegian Sea case study . Phys. Chem. Earth 21 , 517 – 522 .  

  5. Broström , G . 1998 . A note on the C/N and C/P ratio of the biological production in the Nordic Seas . Tellus 50B , 93 – 109 .  

  6. Broström , G . 2000 . The role of the seasonal cycles for the air-sea exchange of CO2 . Mar. Chem . 72 , 151 – 169 .  

  7. Chen , C.-T. A. , Jones , E. P. and Lin , K . 1990 . Wintertime total carbon dioxide measurements in the Norwegian and Greenland seas . Deep-Sea Res . 37 , 1455 – 1473 .  

  8. Cooper , D. J. , Watson , A. J. and Ling , R. D . 1998 . Variations of pCO2 along a North Atlantic shipping route (UK to Jamaica): a year of automated observations . Mar. Chem . 60 , 147 – 164 .  

  9. Daly , K. L. , Wallace , D. W. R. , Smith , W. O. , Skoog , A. , Lara , R. and coauthors. 1999 . Non-Redfield carbon and nitrogen cycling in the Arctic: effects of ecosystem structure and dynamics . J. Geophys. Res . 104 , 3185 – 3199 .  

  10. Feely , R. A. , Wanninkhof , R. , Takahashi , T. and Tans , P . 1999 . Influence of El Nino on the equatorial Pacific contribution to atmospheric CO2 accumulation . Nature 398 , 597 – 601 .  

  11. Follows , M. J. , Williams , R. G. and Marshall , J. C . 1996 . The solubility pump of carbon in the subtropical gyre of the North Atlantic . J. Mar. Res . 54 , 605 – 630 .  

  12. Gent , P. R. , Willebrand , J. , McDougall , T. J. and McWilliams , J. C . 1995 . Parameterizing eddy-induced tracer transports in ocean circulation models . J. Phys. Ocean . 25 , 463 – 474 .  

  13. Glover , D. M. and Brewer , P. G . 1988 . Estimates of wintertime mixed layer nutrient concentrations in the North Atlantic . Deep-Sea Res . 35 , 1525 – 1546 .  

  14. Hákkinen , S. and Cavalieri , D. J . 1989 . A study of oceanic surface heat fluxes in the Greenland, Norwegian, and Barents seas . J. Geophys. Res . 94 , 6145 – 6157 .  

  15. Ikeda , M. and Sasai , Y . 2000 . Reconstruction of subsurface DIC and alkalinity fields in the North Pacific using assimilation of upper ocean data . Mar Chem . 72 , 343 – 358 .  

  16. Körtzinger , A. , Koeve , W. , Kähler , P. and Mintrop , L . 2001 . C:N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean . Deep-Sea Res . 48 , 661 – 688 .  

  17. Lee , K. , Wanninkhof , R. , Takahashi , T. , Doney , S. C. and Feely , R. A . 1998 . Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide . Nature 396 , 155 – 159 .  

  18. Lefevere , N. and Taylor , A . 2002 . Estimating pCO2 from sea surface temperatures in the Atlantic gyres . Deep-Sea Res . 49 , 539 – 554 .  

  19. Loukos , H. , Vivier , F. , Murphy , P. and Harrison , D. E . 2000 . Variability of the carbon dioxide evasion rates in the equatorial Pacific from 1982 to 1993 estimated from monthly temperature and salinity data . Geophys. Res. Lett . 27 , 1735 – 1738 .  

  20. Marshall , J. , Adcroft , A. , Hill , C. , Perelman , L. and Heisey , C . 1997a . A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers . J. Geophys. Res . 102 , 5753 – 5766 .  

  21. Marshall , J. , Hill , C. , Perelman , L. and Adcroft , A . 1997b . Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling . J. Geophys. Res . 102 , 5733 – 5752 .  

  22. Marshall , J. , Jamous , D. and Nilsson , J . 1999 . Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates . Deep-Sea Res . 46 , 545 – 572 .  

  23. Marshall , J. C. , Nurser , A. J. G. and Williams , R. G . 1993 . Inferring the subduction rate and period over the North Atlantic . J. Phys. Ocean . 23 ( 7 ), 1315 – 1329 .  

  24. Murnane , R. J. , Sarmiento , J. L. and Le Quere , C . 1999 . Spatial distribution of air—sea CO2 fluxes and the interhemispheric transport of carbon by the oceans . Global Biogeochem. Cycles 13 , 287 – 305 .  

  25. Peng , T.-H. , Takahashi , T. , Broecker , W. S. and Olafsson , J . 1987 . Seasonal variability of carbon dioxide, nutrients and oxygen in the north-ern North Atlantic surface water: observations and a model . Tellus 39B , 439 – 458 .  

  26. Sabine , C. L. and Key , R. M . 1998 . Controls on fCO2 in the South Pacific . Mar. Chem . 60 , 95 – 110 .  

  27. Sambrotto , R. N. , Savidge , G. , Robinson , C. , Boyd , R , Takahashi , T. and coauthors. 1993 . Elevated consumption of carbon relative to nitrogen in the surface ocean . Nature 363 , 248 – 250 .  

  28. Sarmiento , J. L. , Murnane , R. and Le Quere , C . 1995 . Air—sea CO2 transfer and the carbon budget of the North Atlantic . Phil. Trans. R. Soc. Lond. B . 384 , 211 – 219 .  

  29. Simonsen , K. and Haugan , P. M . 1996 . Heat budgets of the Arctic, Mediterranean and sea surface heat flux parametrizations for the Nordic seas . J. Geophys. Res . 101 , 6553 – 6576 .  

  30. Speer , K. G. , Isemer , H. J. and Biastoch , A . 1995 . Water mass formation from revised COADS data . J. Phys. Ocean . 25 , 2444 – 2457 .  

  31. Stephens , M. P. , Samuels , G. , Olson , D. B. and Fine , R. A . 1995 . Sea-air flux of CO2 in the North Pacific using shipboard and satellite data . J. Geophys. Res . 100 , 13 571-13 583 .  

  32. Takahashi , T. , Olafsson , J. , Goddard , J. G. , Chipman , D. W. and Suther-land , S. C . 1993 . Seasonal variation of CO2 and nutrients in the high latitude surface oceans: A comparative study . Global Biogeochem. Cycles 7 , 843 – 878 .  

  33. Tans , P. P. , Fung , I. and Takahashi , T . 1990 . Observational constraints on the global atmospheric CO2 budget . Science 247 , 1431 – 1438 .  

  34. Walin , G . 1977 . A theoretical framework for the description of estuaries . Tellus 29 , 128 – 136 .  

  35. Watson , A. J. , Robinson , C. , Robertson , J. E. , Williams , P. J . leB. and Fasham, M. J. R. 1991. Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic. Nature 350, 50 – 53.  

  36. Weiss , R. , von Woy , F. and Salameh , P. K . 1992. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: results from expe-ditions between 1977 and 1990. , Scripps Institution for Oceanog-raphy. Reference 92-11. ORNL/CDIAC-59, Carbon Dioxide In-formation Analysis Centre, Oak Ridge National Laboratory, Oak Ridge, TN .  

comments powered by Disqus