Start Submission Become a Reviewer

Reading: Investigating the sources of synoptic variability in atmospheric CO2 measurements over the N...

Download

A- A+
Alt. Display

Original Research Papers

Investigating the sources of synoptic variability in atmospheric CO2 measurements over the Northern Hemisphere continents: a regional model study

Authors:

C. Geels ,

National Environmental Research Institute, Department of Atmospheric Environment, DK-4000 Roskilde, DK
X close

S. C. Doney,

Woods Hole Oceanographic Institution, Woods Hole, MA 02543, US
X close

R. Dargaville,

Laboratoire des Sciences du Climat et de l’Environnement, 91191 Gif sur Yvette, FR
X close

J. Brandt,

National Environmental Research Institute, Department of Atmospheric Environment, DK-4000 Roskilde, DK
X close

J. H. Christensen

National Environmental Research Institute, Department of Atmospheric Environment, DK-4000 Roskilde, DK
X close

Abstract

Continuous measurements of atmospheric CO2 over the continents are potentially powerful tools for understanding regional carbon budgets, but our limited understanding of the processes driving the high-frequency variability in these measurements makes interpretation difficult. In this paper we examine the synoptic variability (~days) of surface CO2 concentrations in four continental records from Europe and North America. Three source functions corresponding to the ocean, land biosphere and anthropogenic sources and sinks for CO2 have been implemented in a regional atmospheric transport model. In previous carbon studies, monthly biospheric fluxes have typically been used, but here high spatiotemporal (daily, 1°×1°) resolution biospheric fluxes are obtained from the NCAR Land Surface Model (lsm). A high-pass filter is used to remove atmospheric variability on time scales longer than 2 months, and the resulting simulated concentration fields replicates reasonably well the magnitude and seasonality of the synoptic variability across the four observation sites. The phasing of many of the individual events are also captured, indicating that the physical and biogeochemical dynamics driving the model variability likely resemble those in nature.

The observations and model results show pronounced summer maxima in the synoptic CO2 concentration variability at the two stations located in North America, while a slightly different seasonality with high variability throughout fall and winter is observed at the European sites. The mechanisms driving these patterns are studied and discussed based on correlations between the concentration anomalies and the driving atmospheric physical variables and surfaces fluxes in the simulations. During the summer, the synoptic variability over the continents has a significant contribution from variations in regional net primary production, which in turn is modulated by regional, synoptic temperature variability. In winter the synoptic variability is partitioned about equally between biospheric and anthropogenic CO2 and is mainly driven by local vertical mixing and synoptic variations in atmospheric circulation working on the large-scale atmospheric gradient. This study highlights the importance for future modeling work of improved high temporal resolution (at least daily) surface biosphere, oceanic and anthropogenic flux estimates as well as high vertical and horizontal spatiotemporal resolution of the driving meteorology.

How to Cite: Geels, C., Doney, S.C., Dargaville, R., Brandt, J. and Christensen, J.H., 2004. Investigating the sources of synoptic variability in atmospheric CO2 measurements over the Northern Hemisphere continents: a regional model study. Tellus B: Chemical and Physical Meteorology, 56(1), pp.35–50. DOI: http://doi.org/10.3402/tellusb.v56i1.16399
  Published on 01 Jan 2004
 Accepted on 7 Jul 2003            Submitted on 20 Dec 2001

References

  1. Andres , R. J. , Marland , G. , Fung , I. and Matthews , E . 1996 . A 1° x 10 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990 . Global Biogeochem. Cy . 10 , 419 – 429 .  

  2. Ayotte , K. W. , Sullivan , P. P. , Andren , A. , Doney , S. C. , Holtslag , A. A. M. , Large , W. G. , McWilliams , J. C. , Moeng , C.-H. , Otte , M. J. , Tribbia , J. J. and Wyngaard , J. C . 1996 . An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations . Bound-Layer MeteoroL 79 , 131 – 175 .  

  3. Bakwin , P. S. , Tans , P. P. , Hurst , D. F. and Zhao , C . 1998 . Measurments of carbon dioxide on very tall towers: results of the NOAA/CMDL program . Tellus 50B , 401 – 415 .  

  4. Baldocchi , D. , Falge , E. and Wilson , K . 2001 . A spectral analysis of biosphere—atmosphere trace gas flux and meterological variables across hour to multi-year time scales . Agr Forest Meteorol . 107 , 1 – 27 .  

  5. Bonan , G. B . 1996. A Land surface model (Lsm version 1.0) for ecological, hydrological and atmospheric studies. Technical description and user's guide. NCAR Technical Note. National Center for Atmospheric Research, Boulder, CO. NCAR/TN-417±STR.  

  6. Bonan , G. B. , Levis , S. , Kergoat , L. and Oleson , K. W . 2002 . Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models . Global Biogeochem. Cy . 16 ( 2 ), 1021 , https://doi.org/10.1029/2000GB001360 .  

  7. Bousquet , P. , Paylin , R , Ciais , P. , Le Quere , C. , Friedlingstein , P. and Tans , P . 2000 . Regional changes in carbon dioxide fluxes over land and oceans since 1980 . Science , 290 , 1342 – 1346 .  

  8. Brandefelt , J. and Holmen , K . 2001 . Anthropogenic and biogenic winter sources of Artie CO2—a model study . Tellus 53B , 10 – 21 .  

  9. Chevillard , A. , Karstens , U. , Ciais , P. , Lafont , S. and Heimann , M . 2002 . Simulation of atmospheric CO2 over Europe and Western Siberia using the regional scale model REMO . Tellus 54B , 872 – 894 .  

  10. Christensen , J. H . 1995 . Transport of Air pollution in the Troposphere to the Arctic, PhD thesis . National Environmental Research Institute , Denmark .  

  11. Christensen , J. H . 1997 . The Danish Eulerian hemispheric model—a three-dimensional air pollution model used for the arctic . Atmos. Environ . 31 , 4169 – 4191 .  

  12. Craig , S. G. , Holmen , K. J. , Bonan , G. B. and Rasch , P. J . 1998 . Atmospheric CO2 simulated by the National Center for Atmospheric Research Community Climate Model 1 . Mean fields and seasonal cycles. J. Geophys. Res . 103 , 13 213-13 235 .  

  13. Dargaville , R. J. , Law , R. M. and Pribac , F . 2000 . Implications of interannual variability in atmospheric circulation on modeled CO2 concentrations and source estimates . Global Biogeochem. Cy . 14 , 931 – 943 .  

  14. Dargaville , R. J. , Heimann , M. , McGuire , A. D. , Prentice , I. C. , Kick-lighter , D. W. , Joos , F. , Clein , J. S. , Esser , G. , Foley , J. , Kaplan , J. , Meier , R. A. , Melillo , J. M. , Moore , B. , Ramankutty , N. , Reichenau , T. , Schloss , A. , Sitch , S. , Tian , H. , Williams , L. J. and Wittenberg , U . 2002 . Evaluation of terrestrial carbon cycle model through simulations of the seasonal cycle of CO2: results from transient simulations consisting of increasing CO2, climate and land-use effects . Global Biogeochem. Cy . 16 ( 4 ), 1092 , https://doi.org/10.1029/2001GB001426 .  

  15. Denning , A. S. , Collatz , G. J. , Zhang , C. , Randall , D. A. , Berry , J. A. , Sellers , P. J. , Colello , G. D. and Dazlich , D. A . 1996a . Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model, Part 1: Surface carbon fluxes . Tellus 48B , 521 – 542 .  

  16. Denning , A. S. , Randall , D. A. , Collatz , G. J. and Sellers , P. J . 1996b . Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model, Part 2: Simulated CO2 concentrations . Tellus 48B , 543 – 567 .  

  17. Eibisuzaki , W . 1997 . A method to estimate the statistical signifance of a correlation when the data are serially correlated . J. Climate 10 , 2147 – 2153 .  

  18. Emery , J. and Thomson , R. E . 2001 . Data analysis methods in physical oceanography . Elsevie r .  

  19. Erickson , D. J. , DI , Rasch , P. J. , Tans , P. P. , Friedlingstein , P. , Ciais , R , Maier-Reimer , E. , Six , K. , Fischer , C. A. and Walters , S. 1996. The seasonal cycle of atmospheric CO 2 : A study based on the NCAR Community Climate Model (CCM2). J. Geophys. Res . 101 , 15079-15 097.  

  20. Fung , I. , Tucker , C. J. and Prentice , K. C . 1987 . Application of AVHRR vegetation index to study atmospheric-biosphere exchange of CO2 . J. Geophys. Res . 92 , 2999 – 3015 .  

  21. Geels , C . 2003 . Simulating the Current CO2 Content of the Atmosphere: Including Surface Fluxes and Transport across the Northern Hemisphere . PhD thesis , National Environmental Research Institute , Denmark .  

  22. Geels , C. , Christensen , J. H. , Hansen , A. W. , Kiilsholm , S. , Larsen , N. W. , Larsen , S. E. , Pedersen , T. and Sorensen , L. L . 2001 . Modelling concentrations and fluxes of atmospheric CO2 in the North East Atlantic region. Phys . Chem. Earth Part B , 26 , 763 – 768 .  

  23. Gloor , M. , Fung , S. M. and Sarmiento J . 2000 . Optimal sampling of the atmosphere for purpose of inverse modeling: a model study . Global Biogeochem. Cy . 14 , 407 – 428 .  

  24. Gloor , M. , Balcwin , P. , Hurst , D. , Lock , L. and Draxler , R . 2001 . What is the concentration footprint of a tall tower? . J. Geophys. Res . 106 , 17 831-17 841 .  

  25. Graul , R. and Uhse , K . 2001. CO 2 data from Westerland. Germany, WMO WDCGG CD-Rom Nr. 7.  

  26. Grell , G. A. , Dudhia , J. and Stauffer , D. R . 1995 . A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (mm5) . NCAR/TN-398±STR. NCAR Technical Note. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research. Boulder, CO , 122 .  

  27. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. , Bousquet , P. , Bruhwiler , P. , Chen , Y.-H. , Ciais , P. , Fan , S. , Fung , I. Y. , Gloor , M. , Heimann , M. , Higuchi , K. , John , J. , Maki , T. , Maksyu-tov , S. , Masari , K. , Peylin , P. , Prather , M. , Pak , B. C. , Randerson , J. , Sarmiento , J. , Taguchi , S. , Takahashi , T. and Yuen , C.-W . 2002 . Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models . Nature 415 , 626 – 630 .  

  28. Haszpra , L . 1995 . Carbon dioxide concentration measurements at a rual site in Hungary . Tellus 47B , 17 – 22 .  

  29. Haszpra , L . 1999 . On the representativeness of carbon dioxide measurements, J. Geophys. Res . 104 , 26 953-26 960 .  

  30. Haszpra , L . 2001. CO 2 data from K-Puszta. Hungary, WMO WDCGG CD-Rom Nr. 7.  

  31. Heimann , M. , Esser , G. , Haxeltine , A. , Kaduk , J. , Kicklighter , D. W. , Knorr , W. , Kohlmaier , G. H. , McGuire , A. D. , Melillo , J. , Moore , B. , BI , Otto , R. D. , Prentice , I. C. , Sauf , W. , Schloss , A. , Sitch , S. , Wit-tenberg , U. and Wfirth, G. 1998. Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO 2 : first results of a model intercomparison study. Global Biogeochem. Cy. 12, 1 – 24.  

  32. Kalnay , E . 1996 . The NMC/NCAR 40-year reanalysis project . Bull. Amer Meteor. Soc ., 77 , 437 – 471 .  

  33. Kjellstriim , E. , Holmen , K. , Eneroth , K. , and Engardt , M . 2002 . Summertime Siberian CO2 simulations with the regional transport model MATCH: a feasibility study of carbon uptake calculations from EU-ROSM data . Tellus 54B , 834 – 849 .  

  34. Lafont , S. , Kergoat , L. , Dedieu , G. , Chevillard , A. , Karstens , U. and Kolle , O . 2002 . Spatial and temporal variability of land CO2 fluxes estimated with remote sensing and analysis data over western Eurasia , Tellus , 54B , 820 – 833 .  

  35. Law , R. M. , Rayner , P. J. , Denning , A. S. , Erickson , D. , Fung , I. Y. , Heimann , M. , Piper , S. C. , Ramonet , M. , Taguchi , S. , Taylor , J. A. , Trudinger , C. M. and Watterson , I. G . 1996 . Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions . Global Biogeochem. Cy . 10 , 783 – 796 .  

  36. Law , R. M. , Rayner , P. J. , Steele , L. P. and Enting , I. G . 2002 . Using high temporal frequency data for CO2 inversions . Global Biogeochem. Cy . 16 ( 4 ), 1053 , https://doi.org/10.1029/2001GB001593 .  

  37. Levin , I. , Graul , R. and Trivett , N. B. A . 1995 . Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany . Tellus 47B , 23 – 34 .  

  38. Olivier , J. G. J. , Bouwman , A. E , van der Maas , C. W. M. , Berdowslci , J. M. , Veldt , C. , Bloos , J. P. J. , Visschedijk , A. J. H. , Zandveld , P. J. and Haverlag , J. L . 1996. Description of EDGAR Version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 10 x 10 grid, National Institute of Public Health and the Environment (RVIM) report nr. 771060 002/7'NO-MEP report nr R96/119.  

  39. Olson , J. S , Watts , J. A. and Allison , L. J . 1983. Carbon in live vegetation of major world ecosystems, Rep. ORNL-5862, Oak Ridge Natl. Lab., Oak Ridge, TN.  

  40. Rotty , R. M . 1987 . Estimates of seasonal variation in fossil CO2 emissions . Tellus 39B , 184 – 202 .  

  41. Stull , R. B . 1988 . An Introduction to Boundary Layer Meterology . Kluwer , Dordrecht .  

  42. Takahashi , T. , Wanninkhof , R. H. , Feely , R. A. , Weiss , R. F. , Chipman , D. W. , Bates , N. , Olafsson , J. , Sabine , C. and Sutherland , S. C . 1999. Net sea-air CO 2 flux over the global oceans: an improved estimate based on the sea-air CO 2 difference. In: Proc. 2nd Int. Symp., CO 2 in the Oceans. (ed.Y. Nojiri). Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, 9 – 14  

  43. VEMAP Members . 1995 . Vegetation/ecosystems modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling . Global Biogeochem. Cy . 9 , 407 – 437 .  

  44. Wanninkhof , R . 1992 . Relationship between wind speed and gas exchange over the ocean . J. Geophys. Res . 97 , 7373 – 7382 .  

  45. Yuen , C. W. , Higuchi , K. , Trivett , N. B. A. and Cho , H.-R . 1996 . A simulation of a large positive CO2 anomaly over Canadian Arctic Archipelago . J. Meteor Soc. Japan 74 , 781 – 795 .  

comments powered by Disqus