Start Submission Become a Reviewer

Reading: CO2 flux measurements in Russian Far East tundra using eddy covariance and closed chamber te...

Download

A- A+
Alt. Display

Original Research Papers

CO2 flux measurements in Russian Far East tundra using eddy covariance and closed chamber techniques

Authors:

D. G. Zamolodchikov ,

Forest Ecology and Production Center, Russian Academy of Sciences, RU
X close

D. V. Karelin,

Forest Ecology and Production Center, Russian Academy of Sciences; Biological Department, Moscow State University, RU
X close

A. I. Ivaschenko,

Biological Department, Moscow State University, RU
X close

W. C. Oechel,

San Diego State University, US
X close

S. J. Hastings

San Diego State University, US
X close

Abstract

The objective of this study was to estimate the CO2 exchange of a tundra ecosystem in the Russian Far East using the eddy covariance technique using closed-chamber measurements as a reference. An eddy covariance tower was placed near the Lavrentiya settlement (Chukotskiy Peninsula, Russia, 65° 36′N, 171°04′W) within a typical tundra landscape. During the 85 d of continuous measurements [Julian days (JD) 205–289, 2000] the CO2 exchange of the studied ecosystem was found to be close to equilibrium (a carbon sink at 10.2 gC m−2). In the late summer period (JD 205–240) the ecosystem sequestered 32.1 gC m−2, whereas in autumn (JD 241–289), it was functioning as a carbon source of 21.9 gC m−2. Model-based estimates of ecosystem respiration and gross primary production were obtained over the period of observations. These are the first eddy covariance-based measurements performed in the Russian tundra.

How to Cite: Zamolodchikov, D.G., Karelin, D.V., Ivaschenko, A.I., Oechel, W.C. and Hastings, S.J., 2003. CO2 flux measurements in Russian Far East tundra using eddy covariance and closed chamber techniques. Tellus B: Chemical and Physical Meteorology, 55(4), pp.879–892. DOI: http://doi.org/10.3402/tellusb.v55i4.16384
1
Views
  Published on 01 Jan 2003
 Accepted on 11 Mar 2003            Submitted on 15 Jan 2002

References

  1. Auble , D. L. and Meyers , T. P . 1992 . An open path, fast response infrared absorption gas analyzer for H20 and CO2 . Boundary-Layer Meteorol . 59 , 243 – 256 .  

  2. Baldocchi , D. D. , Hicks , B. B. and Meyers , T. P . 1988 . Mea-suring biosphere-atmosphere exchanges of biologically re-lated gazes with micrometeorological methods . Ecology 65 , 1331 – 1340 .  

  3. Baldocchi , D. D. , Valentini , R. , Running , S. , Oechel , W. and Dahlman , R . 1996 . Strategies for measuring and modelling of carbon dioxide and water vapour over terrestrial ecosys-tems . Global Change Biol . 2 , 159 – 168 .  

  4. Baldocchi , D. D. , Vogel , C. A. and Hall , B . 1997. Seasonal variation of energy and water exchange rates above and below a boreal jack pine forest canopy. J. Geophys. Res . 102 , 28939 – 28951.  

  5. Billings , W. D . 1987 . Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future . Quaternary Sci. Revi . 6 , 165 – 177 .  

  6. Blanken , P. D. , Black , T. A. , Neumann , H. H. , Den Hartog, G., Yang, P. C., Nesic, Z., Staebler, R., Chen, W. and Novak, M. D. 1998. Turbulent flux measurements above and below the overstory of a boreal aspen forest. Boundary-Layer Meteorol. 89, 109 – 140.  

  7. Chapin , F. S. DI , McGuire , A. D. , Randerson , J. , Pielke , R. , Baldocchi , D. , Hobbie , S. E. , Roulet , N. , Eugster , W. , Ka-sischke , E. , Rastetter , E. B. , Zimov , S. A. and Running , W . 2000. Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biol. 6 (Suppl. 1), 211 – 223  

  8. Chapman , W. L. and Walsh , J. E . 1993 . Recent variations of sea ice and air temperature in high latitudes . Bull. Am. Meteorol. Soc . 74 , 33 – 47 .  

  9. Christensen , T. R. , Jonasson , S. , Michelsen , A. , Callaghan , T. V. and Havstrom , M . 1998. Environmental controls on soil respiration in the Eurasian and Greenlandic Arctic. J. Geophys. Res . 103 , D22, 29 015-29 021.  

  10. Eugster , W. , McFadden , J. P. and Chapin , F. S. III . 1997 . A comparative approach to regional variation in surface fluxes using mobile eddy correlation towers . Boundary-Layer Meteorol . 85 , 293 – 307 .  

  11. Goulden , M. L. , Munger , J. W. , Fan , S.-M. , Daube , B. C. and Wofsy , S. C . 1996. Measurements of carbon sequestra-tion by long term eddy covariance: Methods and a critical evaluation of accuracy. Global Change Biol. 2 , 169 – 182. Harazono, Y., Mano, M., Yoshimoto, M., Vourlitis, G. L. and Oechel, W. C. 1998. CO2 budget of inland Arctic tundra in Alaska, micrometeorological measurements and empirical evaluations. Proceedings of 23rd Conference on Agricul-tural and Forest Meteorol, 2-6 November 1998. American Meteorological Society, 111 – 114  

  12. Harazono , Y. , Mano , M. , Miyata , A. , Zulueta , R. C. and Oechel , W. C . 2003. Inter-annual carbon dioxide uptake at wet sedge tundra ecosystem in the Arctic. Taus 55B, in press  

  13. Hobbie , S. , Schimel , J. , Trumbore , S. and Randerson , J. R . 2000 . Controls over carbon storage and turnover in high-latitude soils. Global Change Biol . 6 (Suppl. 1) , 196 - 210 .  

  14. Hogg , E. H. , Lieffers , V. J. and Wein , R. W. 1992. Potential carbon losses from peat profiles: effects of temperature, drought cycles, and fire . EcoL AppL 2 , 298 – 306 .  

  15. Hydra soil moisture probe user's manual. Version 1.2. 1994. Vitel, Inc. , Cahntilly, VA , 24 pp.  

  16. Jarvis , P. G. , Massheder , J. M. , Hale , S. E. , Moncrieff , J. B. , Rayment , M. and Scott , S. L. 1997. Seasonal variation on carbon dioxide, water vapor and energy exchanges of a boreal black spruce forest. J. Geophys. Rese. 102,28 953-28 966.  

  17. Lafleur , P. M . 1999 . Growing season energy and CO2 ex-change at a subarctic boreal woodland . J. Geophys. Res . 104 , 9571 – 9580 .  

  18. Lloyd , J. and Taylor , J. A . 1994. On the temperature depen-dence of soil respiration. Funct. EcoL 8 , 315 – 323. Kozhevnikov, J. P. and Zheleznov-Chukotskii, N. K. 1995. Beringia: its history and evolution. Moscow, Naulca, 383 pp (in Russian).  

  19. Melillo , J. M. , McGuire , A. D. , Kicklighter , D. W. , Moore , B. , Vorosmarty , C. J. and Schloss , A. L. 1993. Global climate change and terrestrial net primary production. Nature 363, 234 – 240.  

  20. Miyata , A. , Leuning , R. , Denmead, 0. T., Kim, J. and Hara-zono, Y. 2000. Carbon dioxide and methane fluxes from an intermittently flooded pady field. Agric. For Meteorol. 2779, 1 – 17.  

  21. Monsi , M. and Saelci , T . 1953 . Uber den Lichtfalctor in den Pflanzengesellschaften und seine Bedeutung fur die Stoff-production . Jpn. J. BoL 14 , 22 – 56 .  

  22. Oechel , W. C. , Hastings , S. J. , Jenkins , M. , Riechers , G. , Grulke , N. and Vourlitis , G . 1993 . Recent change of Arctic tundra ecosystems from a carbon sink to a source . Nature 361 , 520 – 523 .  

  23. Oechel , W. C. and Vourlitis , G. L . 1994 . The effects of climate change on Arctic tundra ecosystems . Trends EcoL Evolut . 9 , 324 – 329 .  

  24. Oechel , W. C. , Vourlitis , G. L. , Hastings , S. J. and Bochlcarev , S. A . 1995 . Change in Arctic CO2 flux over two decades: effects of climate change at Barrow, Alaska . EcoL AppL 5 , 846 – 855 .  

  25. Oechel , W. C. , Vourlitis , G. L. , Hastings , S. J. , Hinzman , L. and Kane , D . 2000a . Acclimation of ecosystem CO2 ex-change in the Alaskan Arctic in response to decadal warm-ing . Nature 406 , 978 – 981 .  

  26. Oechel , W. C. , Vourlitis , G. L. , Verfaillie, J. Crawford , T. , Brooks , S. , Dumas , E. , Hope , A. , Stow , D., Boynton, B., Nosov, V. and Zulueta, R. 2000b. A scaling approach for quantifying the net CO2 flux of the Kuparuk river Basin, Alaska. Global Change Biol. 6 (Suppl. 1), 160 – 173  

  27. Rayment , M. B and Jarvis , P. G . 2000 . Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest . Soil Biol. Biochem . 32 , 35 – 45 .  

  28. Rannik , U. , Aubinet , M. , Kurbanmuradov , O. , Sabelfeld , K. K. , Marklcanen , T. and Vesala , T. 2000. Footprint analysis for measurements over a heterogeneous forest. Boundary-Layer Meteorol. 97, 137 – 166.  

  29. Shaw , R. H. and Zhang , X. J . 1992 . Evidence of pressure-forced flow in forest . Boundary-Layer Meteorol . 58 , 273 – 288 .  

  30. Soegaard , H. and Nordstroem , C . 1999 . Carbon dioxide ex-change in a high-arctic fen estimated by eddy covariance measurements and modelling . Global Change BioL 5 , 547 – 562 .  

  31. Scientific-applied reference book on climate of USSR. 1990. Issue 33. Magadan district. Leningrad, Gidrometeoizdat, 566 pp (In Russian).  

  32. Vourlitis , G. L. , Oechel , W. C. , Hastings , S. J. and Jenkins , M. A . 1993 . A system for measuring in situ CO2 and CH4 flux in unmanaged ecosystems: an arctic example . Funct. EcoL 7 , 369 – 379 .  

  33. Vourlitis , G. L. and Oechel , W. C . 1997 . Landscape-scale CO2, H20 vapour and energy flux of moist-wet coastal tundra ecosystems over two growing seasons . J. EcoL 85 , 575 – 590 .  

  34. Webb , E. K. , Pearman , G. I. and Leuning , R . 1980 . Correc-tions of flux measurements for density effects due to heat and water vapour transfer . Q. J. R. Meteorol. Soc . 106 , 85 – 100 .  

  35. Williams , M. , Eugster , W. , Rastetter , E. B. , McFadden , J. P. and Chapin, E S. M. 2000. The controls on net ecosystem productivity along an Arctic transect: a model comparison with flux measurements. Global Change Biol. 6 (Suppl. 1), 116 – 126  

  36. Zamolodchikov , D. G. , Karelin , D. V. and Ivaschenlco , A. I . 2000a . Sensitivity of tundra carbon balance to ambient temperature. Water; Air and Soil Pollution 119 , 157 – 169. Zamolodchikov, D. G., Lopes de Gerenu, V. 0., Karelin, D. V., Ivaschenko, A. I. and Chestnykh, 0. V. 2000b. Carbon emission by the southern tundra during cold seasons . Doc. Biol. Sci . 372 , 312 – 314 .  

  37. Zamolodchikov , D. G. and Karelin , D. V . 2001 . An empirical model of carbon fluxes in Russian tundra . Global Change Biol . 7 , 147 – 162 .  

  38. Zimov , S. A. , Zimova , G. M. , Davidov , S. P. , Davidova , A. I. , Voropaev , Y. V. , Voropaeva , Z. N. , Prosiannilcov , S. E. ), Prosiannikova, 0. V., Semiletova, I. V. and Semiletov, I. P. 1993. Winter biotic activity and production of CO2 in Siberian soils: A factor in greenhouse effect. J. Geophys. Res . 98 , 5017 – 5023.  

  39. Zimov , S. A. , Semiletov , I. P. , Davidov , S. P. , Voropaev , Y. V. , Prosiannikov , S. F. ,Chapin, M. C. and Chapin, F. C. M. 1996. Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric CO2. Climatic Change 33, 111 – 120.  

  40. Zimov , S. A. , Davidov , S . P., Zimova, G. M., Davidova, A. I., Chapin, E S. DI, Chapin, M. C. and Reynolds, J. F. 1999. Contribution of disturbance to increasing sea-sonal amplitude of atmospheric CO2 . Science 284 , 1973– 1976 .  

  41. Zukert , N. V. and Zamolodchikov , D. G . 1997. Long-term trends of air temperature and precipitation in Russian tun-dra zone. Meteorologiya i Gidrologiya (Meteorology and Hydrology) 8,45-52 (in Russian).  

comments powered by Disqus