Start Submission Become a Reviewer

Reading: Land-use change alters New Zealand’s terrestrial carbon budget: uncertainties associated wit...

Download

A- A+
Alt. Display

Original Research Papers

Land-use change alters New Zealand’s terrestrial carbon budget: uncertainties associated with estimates of soil carbon change between 1990–2000

Authors:

K. R. Tate ,

Landcare Research, Private Bag 11052, Palmerston North, NZ
About K. R.

Dr.

X close

N. A. Scott,

Woods Hole Research Center, Woods Hole, Massachusetts, US
X close

S. Saggar,

Landcare Research, Palmerston North, NZ
X close

D. J. Giltrap,

Small Office Systems Ltd, Lower Hutt, NZ
X close

W. T. Baisden,

Landcare Research, Palmerston North, NZ
X close

P. F. Newsome,

Landcare Research, Palmerston North, NZ
X close

C. M. Trotter,

Landcare Research, Palmerston North, NZ
X close

R. H. Wilde

Landcare Research, Palmerston North, NZ
X close

Abstract

In New Zealand, afforestation and reforestation of grazing land give rise to large (relative to national CO2 emissions) vegetation carbon (C) sinks. These land-use changes may, however, lead to losses of mineral soil C. Full C accounting may, therefore, require including mineral soil C losses if credits are awarded for vegetation C. To monitor soil C stocks and changes, we developed an IPCC-based soil Carbon Monitoring System (CMS) in which New Zealand is stratified by soil type, climate, land-use and an erosivity index (slope × precipitation). Georeferenced soil C data were used to assign steady-state soil C stocks to various combinations of these factors (cells). We then used a General Linear Model to compare soil C between cells, and derived land-use effects (LUEs) from this analysis that quantify soil C changes that accompany land-use change. These LUEs were used to predict soil C changes resulting from land-use change between 1990–2000. We tested the CMS by comparing predicted soil C stocks, and changes in these stocks, against more detailed soil C data. Overall, soil C estimates obtained from the CMS are consistent with detailed, stratified soil C measurements at specific sites and over larger regions. However, for grazing-land to exotic-forest conversions, estimates of soil C changes are higher and more variable than those based on paired-site studies. Nationally, soil C losses of 0.9 ± 0.4 Tg C yr−1 for all land-use changes over the period 1990–2000 appear likely, with uncertainties arising mainly from estimates of changes in the areas involved, and LUE values for cells with limited soil C data. Changes in soil C in reforested land are likely to be small, but precise area changes, soil C data and detailed paired-site studies are lacking for this key land-use change. By contrast, biomass C accumulation in new exotic plantation forests (afforestation) and native reforestation are 6–9 Tg C yr−1, with C accumulation by afforestation being well quantified. Detailed site studies, process-based modelling and improved area-change estimates are needed to further reduce uncertainties in land-use-change effects on soil C. Our approach could be adapted to countries with country-specific land-use issues different from those in the IPCC default methodology.

How to Cite: Tate, K.R., Scott, N.A., Saggar, S., Giltrap, D.J., Baisden, W.T., Newsome, P.F., Trotter, C.M. and Wilde, R.H., 2003. Land-use change alters New Zealand’s terrestrial carbon budget: uncertainties associated with estimates of soil carbon change between 1990–2000. Tellus B: Chemical and Physical Meteorology, 55(2), pp.364–377. DOI: http://doi.org/10.3402/tellusb.v55i2.16762
  Published on 01 Jan 2003
 Accepted on 23 Aug 2002            Submitted on 2 Jan 2002

References

  1. Arneth , A. M. , Kelliher , F. M. , Gower , S. T. , Scott , N. A. , Byers , J. N. and McSeveney , T. M . 1998 . Physical vari-ables regulating soil carbon dioxide efflux following clear cutting of a Pinus radiata D. Don plantation . J. Geophys. Res . 103 , 6595 – 5705 .  

  2. Coomes , D. A. , Allen , R. B. , Scott , N. A. , Goulding , C. and Beets , P . 2002 . Designing systems to monitor carbon stocks in forests and shrublands . Forest EcoL Mgmt . 164 , 89 – 108 .  

  3. Davis , M. and Condron , L . 2002 . Impact of grassland af-forestation on soil carbon in New Zealand: a review of paired-sites studies . Aust. J. Soil Res . 40 , 675 – 690 .  

  4. Giltrap , D. J. , Betts , H. , Wilde , R. H. , Oliver , G. , Tate , K. R. and Baisden , W. T . 2001. Contribution of soil car-bon to New Zealand's CO2 emissions. Report XBI. Inte-grate General Linear Model and Digital Elevation Model. JNT 0001/136, Ministry for the Environment, Wellington, New Zealand. 44 pp.  

  5. Hall , G. M. K. , Wiser , S. K. , Allen , R. B. , Beets , P. N. and Goulding , C. J . 2001 . Strategies to estimate national forest carbon stocks from inventory data: the 1990 New Zealand baseline . Global Change Biol . 7 , 389 – 403 .  

  6. IPCC . 1996. Land-use change and forestry. In: Intergovern-mental Panel for Climate Change. Revised 1996 guidelines for national greenhouse gas inventories: reference manual chap. 5, pp. 5.6-5.75.  

  7. Johnson , D. W. , Knoepp , J. D. , Swank , W. T. , Shan , J. , Morris , L. A. , Van Lear , D. H. and Kapeluck , P. R . 2002 . Ef-fects of forest management on soil carbon: results of some long-term resampling studies . Environ. Poll . 116 , S201–S208 .  

  8. Keeling , C. D. , Whorf , T. P. , Wahlen , M. and van der Plicht , J . 1995 . Interannual extremes in the rate of rise of atmo-spheric carbon dioxide since 1982 . Nature 375 , 666 – 670 .  

  9. MAF . 2001. New Zealand Ministry of Agriculture and Forestry Statistics Website www.maf.govt.nz/statistics/ primaryindustries/.  

  10. Marshall , H. D. , Wakelin , S. J. and Robertson , K. A . 2001. Carbon inventory of New Zealand's planted forests. (Cal-culations revised as at April 2001). Contract report for the Ministry of Forestry and the Ministry for the Environment, New Zealand.  

  11. McMurtrie , R. E. , Medlyn , B. E. and Dewar , C . 2001 . In-creased understanding of nutrient immobilisation in soil organic matter is critical for predicting the carbon sink strength of forest ecosystems over the next 100 years . Tree Physiol . 21 , 831 – 839 .  

  12. National Exotic Forestry Description . 2000. New Zealand Ministry of Agriculture and Forestry Website http://www. maf.govt.nz/statistics/primaryindustries/forestry/forest-resources/national-exotic-forest-2000/index.htm.  

  13. Newsome , P. E 1987. The Vegetative Cover Map of New Zealand. Water and Soil Miscellaneous Publication No. 112. National Water and Soil Conservation Authority, Wellington, New Zealand.  

  14. Paul , K. I. , Polglase , P. J. , Nyakuengama , J. G. and Khanna , P. K . 2002. Change in soil carbon following afforestation. Forest Ecol. Mgmt. (in press).  

  15. Saggar , S. , Hedley , C. and Mackay , A. D . 1997 . Partitioning and translocation of photosynthetically fixed MC in grazed hill pastures . Biol. FertiL Soils 25 , 152 – 158 .  

  16. Saggar , S. , Hedley , C. B. , Salt , G. and Giddens , K. M . 2000 . Influence of soil P status and of added N on C mineral-isation from 14C-labelled glucose . Biol. Fertil. Soils 32 , 209 – 216 .  

  17. Saggar , S. , Tate , K. R. , Hedley , C. , Perron , K. and Loganathan , P . 2001 . Are soil carbon levels in our es-tablished pastures at or near steady state? N.Z. Soil News 49 ( 4 ), 73 – 78 .  

  18. Scott , N. A. , Tate , K. R. , Giltrap , D. J. , Smith , C. T. , Wilde , R. H. , Newsome , P. F. and Davis , M. R . 2002. Monitoring land-use change effects on soil carbon in New Zealand: quantifying baseline soil carbon stocks. Environ. Poll. 116, S 167-S 186.  

  19. Scott , N. A. , White , J. D. , Townsend , J. , Whitehead , D. , Leathwick , J. , Hall , G. , Marden , M. , Rogers , G. , Watson , A. J. and Whaley , P. T . 2000 . Carbon and ni-trogen distribution and accumulation in a New Zealand scrubland ecosystem . Can. J. For Res . 30 , 1246 – 1255 .  

  20. Scott , N. A. , Tate , K. R. , Ford-Robertson , J. , Giltrap , D. J. and Smith , C. T . 1999 . Soil carbon storage in plantation forests and pastures; land-use change implications . Tellus 51B , 326 – 335 .  

  21. SRLUCF . 2000 . Land Use, Land-Use Change and Forestry . A Special Report of the IPCC . (eds. R. T. Watson , I. R. Noble , B. Bolin , N. H. Ravindranath , D. J. Verardo and D. J. Dokken ) Cambridge University Press .  

  22. Tate , K. R. , Giltrap , D. J. , Claydon , J. J. , Newsome , P. F. , Atkinson , I. A. E. , Taylor , M. D. and Lee , R . 1997 . Organic Carbon stocks in New Zealand's terrestrial ecosystems . J. R. Soc. N.Z . 27 , 315 – 335 .  

  23. Tate , K. R. , Scott , N. A. , Parshotam , A. , Brown , L. , Wilde , R. H. , Giltrap , D. J. , Trustrum , N. A. , Gomez , B. and Ross , D. J . 2000 . A multi-scale analysis of a terrestrial carbon budget. Is New Zealand a source or sink of carbon?Agric . Ecosyst. Environ . 82 , 229 – 246 .  

  24. Tate , K. R. , Davis , M. R. , Wilde , R. H. , Beets, P. Baisden , W. T. , Betts , H. , Newsome , P. E , Giltrap , D. J. and Gibb , R. 2001. Contribution of soil carbon to New Zealand's CO2 emissions. Report XV. On-going sampling requirements, including coefficients of change and improving the database. JNT 0001/116, Min-istry for the Environment, Wellington, New Zealand. 45 pp.  

  25. Tian , H. , Mellillo , J. M. , Kicklighter , D. W. , McGuire , A. D. and Helfrich , J . 1999 . The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States . Tellus 51B , 414 – 452 .  

  26. Trotter , C. M. , Marden , M. , Scott , N. A. , Pinkney , E. J. , Rodda , N. J. , Rowan , D. , Townsend , J. A. and Watson , A. J . 2001. Carbon storage in Mdnulca/Kdnuka: Sequestra-tion rates in indigenous shrublands and reverting farmland. Landcare Research Report, LC0102/008, Foundation for Research, Science and Technology, Wellington. 13 pp.  

  27. UNFCC . 1998 . The Kyoto Protocol to the Convention on Cli-mate Change . United Nations Climate Change Secretariat , Bonn .  

  28. Yeates , G. W. , Hawke , M. F. and Rijkse , W. C . 2000 . Changes in soil fauna and soil conditions under Pinus radiata agro-forestry regimes during a 25-year tree rotation . Biol. FertiL Soils 31 , 391 – 406 .  

comments powered by Disqus