Start Submission Become a Reviewer

Reading: Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil resp...

Download

A- A+
Alt. Display

Original Research Papers

Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature

Authors:

Chris D. Jones ,

Hadley Centre, Met. Office, Bracknell, Berkshire RG12 2SY, GB
X close

Peter Cox,

Hadley Centre, Met. Office, Bracknell, Berkshire RG12 2SY, GB
X close

Chris Huntingford

Centre for Ecology and Hydrology, Wallingford OX10 8BB, GB
X close

Abstract

Carbon-cycle feedbacks have been shown to be very important in predicting climate change over the next century, with a potentially large positive feedback coming from the release of carbon from soils as global temperatures increase. The magnitude of this feedback and whether or not it drives the terrestrial carbon cycle to become a net source of carbon dioxide during the next century depends particularly on the response of soil respiration to temperature. Observed global atmospheric CO2 concentration, and its response to naturally occurring climate anomalies, is used to constrain the behaviour of soil respiration in our coupled climate—carbon-cycle GCM. This constraint is used to quantify some of the uncertainties in predictions of future CO2 levels. The uncertainty is large, emphasizing the importance of carbon-cycle research with respect to future climate change predictions.

How to Cite: Jones, C.D., Cox, P. and Huntingford, C., 2003. Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature. Tellus B: Chemical and Physical Meteorology, 55(2), pp.642–648. DOI: http://doi.org/10.3402/tellusb.v55i2.16760
1
Views
  Published on 01 Jan 2003
 Accepted on 12 Jun 2002            Submitted on 14 Jan 2002

References

  1. Bousquet , P. , Peylin , P. , Ciais , P. , Le Quere , C. , Friedlingstein , P. and Tans , P . 2000 . Regional changes in CO2 fluxes of land and ocean since 1980 . Science 290 , 1342 – 1346 .  

  2. Collatz , G. J. , Ball , J. T. , Grivet , C. and Berry , J. A . 1991 . Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer . Agric. Forest Me-teoroL 54 , 107 – 136 .  

  3. Collatz , G. J. , Ribas-Carbo , M. and Berry , J. A . 1992. A coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant PhysioL 19 , 519 – 538. Cox, P.M. 2001. Description of the TRIFFID dynamic global vegetation model. Technical Note 24, Hadley Centre, Met. Office, UK.  

  4. Cox , P. M. , Huntingford , C. and Harding , R. J . 1998. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. HydroL 212-213, 79 – 94.  

  5. Cox , P. M. , Betts , R. A. , Jones , C. D. , Spall , S. A. and Tot-terdell , I. J . 2000 . Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model . Nature 408 , 184 – 187 .  

  6. Cox , P.M. , Betts , R. A. , Jones , C. D. , Spall , S. A. and Totter-dell , I. J . 2001 . Modelling vegetation and the carbon cycle as interactive elements of the climate system. In: Meteo-rology at the millennium , ( ed. R. Pearce ), Academic Press , New York .  

  7. Friedlingstein , P. , Bopp , L. , Ciais , P. , Dufresne , J. , Fairhead , L. , LeTreut , H. , Monfray , P. and Orr , J. 2001. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Let. 28, 1543 – 1546.  

  8. Giardina , C. and Ryan , M . 2000 . Evidence that decomposi-tion rates of organic carbon in mineral soil do not vary with temperature . Nature 404 , 858 – 861 .  

  9. Holland , E. , Neff , J. , Townsend , A. and McKeown , B . 2000 . Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: Implications for models . Global Biogeochem. Cycles 14 , 1137 – 1151 .  

  10. Huntingford , C. and Cox , P . 2000 . An analogue model to derive additional climate change scenarios from existing GCM simulations . Clim. Dynam . 16 , 575 – 586 .  

  11. Huntingford , C. , Cox , P. and Lenton , T . 2000 . Contrasting responses of a simple terrestrial ecosystem model to global change . EcoL Modelling 134 , 41 – 58 .  

  12. Jones , C. and Cox , P. 2001a. Constraints on the temperature sensitivity of global soil respiration from the observed in-terannual variability in atmospheric CO2. Atmos. Sci. Lett. https://doi.org/10.1006/asle.2000.0041 .  

  13. Jones , C. and Cox , P . 200 lb. Modelling the volcanic signal in the atmospheric CO2 record. Global Biogeochem. Cycles 15, 453 – 466.  

  14. Jones , C. , Collins , M. , Cox , P. and Spall , S . 2001 . The carbon cycle response to ENSO: A coupled climate-Carbon cycle model study . J. Clim . 14 , 4113 – 4129 .  

  15. Joos , F. , Bruno , M. , Fink , R. , Siegenthaler , U. , Stocker , T. , Le Quere, C. and Sarmiento, J. 1996. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus 48B, 397 – 417.  

  16. Keeling , C. D. , Whorf , T. , Whalen , M. and der Plicht, J. V. 1995. Interannual extremes in the rate of rise of at-mospheric carbon dioxide since 1980. Nature 375, 666 – 670.  

  17. Kicklighter , D. , Melillo , J. , Peterjohn , W. , Rastetter , E. , McGuire , A. , Steudler , P. and Aber , J. 1994. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils. J. Geo-phys. Res. 99, 1303 – 1315.  

  18. Le Quere , C. , Orr , J. , Monfray , R , Aumont, 0. and Madec, G. 2000. Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Global Biogeochem. Cycles 14, 1247 – 1265.  

  19. Luo , Y. , Wan , S. , Hui , D. and Wallace , L. L . 2001 . Acclimati-zation of soil respiration to warming in a tall grass prairie . Nature 413 , 622 – 625 .  

  20. McGuire , A. , Melillo , J. , Joyce , L. , Kicklighter , D. , Grace , A. , Moore DI, B. and Vorosmarty, C. 1992. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Global Biogeochem. Cycles 6, 101 – 124.  

  21. Nicholls , N. , 1991. The El Nino/Southern Oscillation and Australian vegetation. In: Vegetation and climate interac-tions in semi-arid regions, (eds A. Henderson-Sellers and A. J. Pitman), Adv. Veg. Sci. Vol. 12, Kluwer, Amsterdam, 23 – 36  

  22. Prentice , I. , Farquhar , G. , Fasham , M. , Goulden , M. , Heimann , M. , Jaramillo , V , Kheshgi , H. , Le Quere, C., Scholes, R. and Wallace, D. 2001. The carbon cycle and atmospheric carbon dioxide. In: Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, (eds. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. van der Linden, X. Dai, K. Maskell and C. I. Johnson, chapter 3, Cambridge University Press , Cambridge , 183 – 237  

  23. Raich , J. and Schlesinger , W . 1992 . The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate . Tellus 44B , 81 – 99 .  

  24. Sellers , P. , Randall , D. , Collatz , C. , Berry , J. , Field , C. , Da-zlich, D., Zhang, C. and Collelo, G. 1996. A revised land surface parameterisation (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate 9, 676 – 705.  

comments powered by Disqus