Start Submission Become a Reviewer

Reading: Large-eddy simulation of double-plume formation induced by CO2 dissolution in the ocean

Download

A- A+
Alt. Display

Original Research Papers

Large-eddy simulation of double-plume formation induced by CO2 dissolution in the ocean

Authors:

Baixin Chen ,

Research Institute of Innovative Technology for the Earth, Tsukuba-Division of RITE, 1-2-1 Namiki, Tsukuba East, Tsukuba 305-8564, JP
X close

Yongchen Song,

Research Institute of Innovative Technology for the Earth, Tsukuba-Division of RITE, 1-2-1 Namiki, Tsukuba East, Tsukuba 305-8564, JP
X close

Masahiro Nishio,

National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba East, Tsukuba 305-8564, JP
X close

Makoto Akai

National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba East, Tsukuba 305-8564, JP
X close

Abstract

Using two-fluid LES technology, a numerical model is developed to simulate double-plume formation under conditions relevant to CO2 ocean sequestration applications. A small-scale ocean turbulent flow is created and maintained by a forced-dissipative mechanism and LES. Data on ocean currents, temperature and salinity were employed by the model as inlet boundary and initial conditions, respectively. A set of empirical formulae, calibrated with laboratory experimental data, was developed to describe momentum, mass and heat transfer phenomena. Using this model, the influence of the initial diameter of CO2 droplets released in the deep ocean and thermal effects on the structure of two plumes were investigated. The height of the CO2 droplet plume and the local minimum pH within the CO2-enriched seawater plume were found to be very sensitive to the initial diameter of injected CO2 droplets. Plume height and pH are two key parameters to assess CO2 sequestration efficiency and related biological impacts. Thermal effects associated with CO2 dissolution appeared to have limited influence on CO2-enriched seawater plume structure and pH, but can significantly affect the LCO2 plume and the temperature field near the CO2 injection nozzle.

How to Cite: Chen, B., Song, Y., Nishio, M. and Akai, M., 2003. Large-eddy simulation of double-plume formation induced by CO2 dissolution in the ocean. Tellus B: Chemical and Physical Meteorology, 55(2), pp.723–730. DOI: http://doi.org/10.3402/tellusb.v55i2.16759
  Published on 01 Jan 2003
 Accepted on 31 Jul 2002            Submitted on 2 Jan 2002

References

  1. Adams , E. E. , Caulfield , J. A. , Herzog , H. J. and Auerbach , D. I. , 1997 . Impacts of reduced pH from ocean CO2 dis-posal: sensitivity of zooplankton mortality to model pa-rameters . Waste Management 17 , 275 – 380 .  

  2. Alendal , G. , Drange , H. and Thorkildsen , F . 1998 . Two-phase modeling of CO2 droplet plumes . NERSC Technical Re-ort No 153 1 – 33 .  

  3. Aseada , T. and Imgerger , J . 1993 . Structure of bubble plumes in linearly stratification environments . J. Fluid Mech . 294 , 35 – 57  

  4. Aya , I. , Yamane , K. and Nariai , H . 1997 . Solubility of CO2 and density of CO2 hydrate at 30 MPa , Energy 22 , 263 – 271 ,  

  5. Chen , B. , Masuda , S. , Nishio , M. , Someya , S. and Alcai , M . 2000. Two-fluid turbulent modeling of liquid CO2 disso-lution in the ocean by LES, Proc. ASME. FEDSM 2000 – 11131  

  6. Clift , R. , Grace , J. R. and Weber , M. E . 1978 . Bubbles , droplets , and particles. Academic Press , New York .  

  7. Ferziger , J. H . 1993 . Subgrid-scale modeling . Large eddy simulation of complex engineering and geophysical flows. (Eds. B. Galperin and S. A. Orszag) , Combridge University Press .  

  8. Kimuro , H. , Kusayanagi , T. and Morishita , M . 1994 . Basic experimental results of liquid CO2 injection into the deep ocean . IEEE Trans. Energy Conversion , 9 , 732 – 735 .  

  9. Lam , K. and Banerjee , S . 1992 . On the condition of streak formation in a bounded turbulent flow . Phys. Fluids A 4 , 306 – 320 .  

  10. Ledwell , J. R. , Watson , A. J. and Law , C. S . 1998 . Mixing of a tracer in the pycnocline . J. Geophysi. Rese . 103 , 21 499-21 529 .  

  11. Lesieur , M. and Metals, 0. 1996. New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28, 45 – 82.  

  12. Liro , C. R. , Adams , E. E. and Herzog , H. J . 1992 . Modeling the release of CO2 in the deep ocean . Energy Conserv. Mgmt . 33 , 667 – 674 .  

  13. McDougall , T. J . 1978 . Bubble plumes in stratified environ-ments . J. Fluid Mech . 85 , 655 – 672 .  

  14. Mori , Y. H. and Mochizuki , T . 1997 . Mass transport across clathrate hydrate films — a capillary permeation model. Chem . Eng. Sc i . 52 , 3613 – 3616 .  

  15. Ozaki , M . 1999. Annual Report of RITE 1999, 286-307 (in Japanese).  

  16. Sato , T. and Hama , T . 2000. Numerical simulation of LCO2 droplet plume in the deep ocean. Proc. ASME. FEDSM2000-11149, 1 – 7  

  17. Schumann , U . 1985. Algorithms for direct numerical sim-ulation of shearing-periodic turbulence. In: Proc. 9th Intl Conf on Numerical Meth. in Fluid Dynam. (ed? Soubbara-mayer and J. P. Boujot). Lecture Notes in Physics, vol. 218, Springer, Barlin, 492 – 546  

  18. Sirignano , W. A . 1986 . The formulation of spray combustion models' resolution compared to droplet spacing . ASME J. Heat Transfer 108 , 633 – 639 .  

  19. Stewart , P. and Munjal , P . 1970. Solubility of carbon dioxide in pure water, synthetic sea water, and synthetic sea water concentrations at —5 to 25°C and 10 to 45 atm pressure. J. Chem. Eng. Data, 15, No. 1.  

  20. Socolofsky , S. A . 2001 . Laboratory experiments of multi-phase plumes in stratification and crossflow . Ph.D Thesis, Dept. Civil & Environ. Eng., MIT, Combridge , MA .  

  21. Woods , J . 1985 . The world ocean circulation experiment . Nature 314 , 501 – 511 .  

  22. Unesco . 1981 . Tenth Report of the Joint Panel on Oceano-graphic Tables and Standards . Unesco Technical Papers in Marine Science, No . 36 , 24 – 29 .  

  23. Song , Y. , Chen , B. and Nishio , M . 2001. Annual Report of RITE 2001, 63-77 (in Japanese).  

comments powered by Disqus