Start Submission Become a Reviewer

Reading: Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmosphe...

Download

A- A+
Alt. Display

Original Research Papers

Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada

Authors:

K. Higuchi ,

Air Quality Research Branch, Meteorological Service of Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, CA
X close

D. Worthy,

Air Quality Research Branch, Meteorological Service of Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, CA
X close

D. Chan,

Air Quality Research Branch, Meteorological Service of Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, CA
X close

A. Shashkov

Air Quality Research Branch, Meteorological Service of Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, CA
X close

Abstract

Time series of in-situ CO2 data from Fraserdale (50°N, 81°W) in the northern Ontario boreal forest is described, together with an analysis of observed variations occurring on daily to interannual timescales. Atmospheric CO2 measurements at Fraserdale reflect a complex interaction between the daily cycle of the vegetative carbon flux and the daily evolution of the boundary layer mixing dynamics. This is particularly evident during the growing season, when CO2 concentrations are influenced strongly by local and regional biospheric activities. In addition, the atmospheric CO2 measurements at Fraserdale are greatly influenced by the direction of atmospheric transport, and reflect the complex heterogeneous distribution of ecosystem types around the site. Averaged over the 7-yr period from 1990 to 1996, the seasonal cycle associated with air from west and northwest of the site shows an amplitude of ~19 ppm, while that associated with air from the south and southwest shows an amplitude of ~23 ppm; the seasonal minimum, on average, occurs about a week earlier in the latter case than in the former. This is reflective of the fact that many of the deciduous trees are located to the south and southwest of Fraserdale. Furthermore, its location in the boreal forest causes the seasonal minimum to occur on average in early August at Fraserdale, compared to late August observed at Alert and at many other background stations in the high-latitude Northern Hemisphere. At the Fraserdale site there is no statistically significant indication, during the 1990–1996 study period, of changes in the length of the growing season (as measured by zero crossing points in the seasonal cycle).

How to Cite: Higuchi, K., Worthy, D., Chan, D. and Shashkov, A., 2003. Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada. Tellus B: Chemical and Physical Meteorology, 55(2), pp.115–125. DOI: http://doi.org/10.3402/tellusb.v55i2.16752
  Published on 01 Jan 2003
 Accepted on 20 Dec 2002            Submitted on 2 Feb 2002

References

  1. Anderson , B. E. , Gregory , G. L. , Collins , J. E. Jr. , Sachse , G. W. , Conway , T. J. and Whiting , G. P . 1996 . Airborne obser-vations of spatial and temporal variability of tropospheric carbon dioxide . J. Geophys. Res . 101 , 1985 – 1997 .  

  2. Bakwin , P. S. , Tans , P. P. , Hurst , D. E and Zhao , C . 1998 . Measurements of carbon dioxide on very tall towers: re-sults of the NOAA/CMDL program . Tellus 50B , 401 – 415 .  

  3. Broecker , W. S. , Takahashi , T. , Simpson , H. J. and Peng , T.-H . 1979 . Fate of fossil fuel carbon dioxide and the global carbon budget . Science 206 , 409 – 418 .  

  4. Bryson , R. A . 1966 . Air masses, streamlines, and the boreal forest . Geogr Bull . 4 , 228 – 269 .  

  5. Ciais , R , Peylin , P. and Bousquet , P. 2000. Regional bio-spheric carbon fluxes as inferred from atmospheric CO2 measurements. EcoL Appl. 10, 1574 – 1589.  

  6. Fan , S.-M. , Gloor , M. , Mahlman , J. , Pacala , S. , Sarmiento , J. , Takahashi , T. and Tans , P. 1998. A large terrestrial car-bon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 442 – 446.  

  7. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. , Bourquet , P. , Bruhwiler , L. , Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Malcsyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T. and Yuen, C. W. 2002. Robust regional estimate of annual CO2 sources and sinks. Nature 415, 626 – 30.  

  8. Halter , B. C. and Harris , J. M . 1983 . On the variability of atmospheric carbon dioxide concentration at Barrow, Alaska, during winter. J. Geophys. Res. 88, 6858–6864. Haszpra, L. 1999. On the representativeness of carbon diox-ide measurements. J. Geophys. Res. 104, 26 953-26 960. Higuchi, K., Trivett, N. B. A. and Daggupaty, S. M. 1987. A preliminary climatology of trajectories related to atmo-spheric CO2 measurements at Alert and Mould Bay . At-mos. Environ . 21 , 1915 – 1926 .  

  9. Inoue , H. Y. and Matsueda , H . 2001 . Measurements of at-mospheric CO2 from a meteorological tower in Tsukuba, Japan . Tellus 53B , 205 – 219 .  

  10. IPCC , 1996. Climate change 1995. The science of climate change. Contribution of Working Group Ito the Second Assessment Report of the Intergovernmental Panel on Cli-mate Change. (eds. J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattengerg and K. Maskell) Cambridge University Press , Cambridge , UK.  

  11. Ito , A. and Oilcawa , T . 2000 . A model analysis of the rela-tionship between climate perturbations and carbon budget anomalies in global terrestrial ecosystems . Climate Res . 15 , 161 – 183 .  

  12. Jobson , B. T. , Wu , Z. , Nilci , H. and Barrie , L. A . 1994 . Sea-sonal trends of isoprene, C2-05 allcanes, and acetylene at a remote boreal site in Canada . J. Geophys. Res . 99 , 1589 – 1599 .  

  13. Jones , C. D. and Cox , P. M . 2001 . Modeling the volcanic signal in the atmospheric CO2 record . Global Biogeochem. Cycles 15 , 453 – 465 .  

  14. Keeling , C. D. , Chin , J. F. S. and Whorf , T. P. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Science 382, 146 – 149.  

  15. Levin , I. , Graul , R. and Trivett , N. B. A. 1995. Long term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B, 23 – 34.  

  16. Nakazawa , T. , Ishizawa , M. , Higuchi , K. and Trivett , N. B. A . 1997 . Two curve fitting methods applied to CO2 flask data . Environmetrics 8 , 197 – 218 .  

  17. Olsen , M. P. , Oikawa , K. K. and MacAfee , A . 1978. A tra-jectory model applied to the long range transport of air pollutants. Meteorological Service of Canada Internal Re-port LRTAP 78-4, Toronto, Ontario, 24 pp.  

  18. MSC , 1999 . Canadian Baseline Program: Summary of Progress to 1998 . Air Quality Research Branch Re-port, Meteorological Service of Canada, Toronto , Ontario , Canada .  

  19. SENES , 1997 . A mixing height study for North America (1987-1991). Report prepared for the Atmospheric Envi-ronment Service by SENES Consultants Ltd ., Richmond Hill , Ontario , Canada .  

  20. Takahashi , T. , Wanninlchof , R. H. , Feely , R. A. , Weiss , R. F. , Chipman , D. W. , Bates , N. , Olafson , J. , Sabine , C. and Sutherland , S. C. 1999. Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air pCO2 difference. In: Proceedings of the 2nd International Symposium CO2 in the Oceans, Center for Global Envi-ronmental Research, National Institute for Environmental Studies, Tsukuba, Japan, pp 9 – 15  

  21. Wong , C. S . 1978 . Atmospheric input of carbon dioxide from burning wood . Science 200 , 197 – 200 .  

  22. Worthy , D. E . J., Levin, I., Trivett, N. B. A., Kuhlmann, A. J., Hopper, J. F. and Ernst, M. K. 1998. Seven years of continuous methane observations at a remote boreal site in Ontario, Canada. J. Geophys. Res . 103 , 15995-16 007.  

comments powered by Disqus