Start Submission Become a Reviewer

Reading: Temporal variations of atmospheric CO2 concentration in a temperate deciduous forest in cent...

Download

A- A+
Alt. Display

Original Research Papers

Temporal variations of atmospheric CO2 concentration in a temperate deciduous forest in central Japan

Authors:

Shohei Murayama ,

National Institute of Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, JP
X close

Nobuko Saigusa,

National Institute of Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, JP
X close

Douglas Chan,

Meteorological Service of Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, CA
X close

Susumu Yamamoto,

National Institute of Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, JP
X close

Hiroaki Kondo,

National Institute of Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, JP
X close

Yozo Eguchi

National Institute of Advanced Industrial Science and Technology, AIST Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, JP
X close

Abstract

In order to examine the temporal variation of the atmospheric CO2 concentration in a temperate deciduous forest, and its relationship with meteorological conditions, continuous measurements of CO2 and meteorological parameters have been made since 1993 on a tower at Takayama in the central part of Japan. In addition to an average secular increase in atmospheric CO2 of 1.8 ppm yr−1, diurnal variation with a maximum during the night-time to early morning and a minimum in the afternoon is observed from late spring to early fall; the diurnal cycle is not so clearly observed in the remaining seasons of the year. A concentration difference between above and below the canopy, and its diurnal variation, can also be seen clearly in summer. Daily mean concentration data show a prominent seasonal cycle. The maximum and the minimum of the seasonal cycle occur in April and from mid August to mid September, respectively. Day-to-day changes in the diurnal cycle of CO2 are highly dependent on the day-to-day variations in meteorological conditions. However, CO2 variations on longer time scales (>10 d) appear to be linearly related to changes in respiration. At Takayama, variations in the 10-d standard deviation of daily mean CO2 data and 10-d averaged respiration show distinct relationships with soil temperature during spring and fall seasons. In spring, respiration has a stronger exponential dependence on soil temperature than in fall. Interestingly, in summer when soil temperature becomes greater than about 15 °C, biological respiration becomes more variable and independent of the soil temperature. Thus, at the Takayama site, the Q10 relationship is seasonally dependent, and does not represent well the biological respiration process when the soil temperature rises above 15 °C.

How to Cite: Murayama, S., Saigusa, N., Chan, D., Yamamoto, S., Kondo, H. and Eguchi, Y., 2003. Temporal variations of atmospheric CO2 concentration in a temperate deciduous forest in central Japan. Tellus B: Chemical and Physical Meteorology, 55(2), pp.232–243. DOI: http://doi.org/10.3402/tellusb.v55i2.16751
  Published on 01 Jan 2003
 Accepted on 20 Dec 2002            Submitted on 17 Jun 2002

References

  1. Bakwin , P. S. , Tans , P. P. , Hurst , D. F. and Zhao , C . 1998 . Measurements of carbon dioxide on very tall towers: re-sults of the NOAA/CMDL program . Tellus 50B , 401 – 415 .  

  2. Bell , G. D. , Halpert , M. S. , Ropelewski , C. F. , Kousky , V. E. , Douglas , A. V , Schnell , R. C. and Gelman , M. E . 1999 . Climate assessment for 1998 . Bull. Am. MeteoroL Soc . 80 , S1–S48 .  

  3. Buchmann , N . 2000 . Biotic and abiotic factors controlling soil respiration rates in Picea abies stands . Soil Biol. Biochem . 32 , 1625 – 1635 .  

  4. Ciais , P. , Tans , P. R , Trolier , M. , White , J. W. C. and Francey , R. J . 1995 . A large northern hemisphere terrestrial CO2 sink indicated by the 13012C ratio of atmospheric CO2 . Science 269 , 1098 – 1102 .  

  5. Davidson , E. A. , Belk , E. and Boone , R. D . 1998 . Soil water content and temperature as independent or con-founded factors controlling soil respiration in a temper-ate mixed hardwood forest . Global Change Biol . 4 , 217 – 227 .  

  6. Fan , S.-M. , Gloor , M. , Mahlman , J. , Pacala , S. , Sarmiento , J. , Takahashi , T. and Tans , P . 1998 . A large terrestrial car-bon sink in North America implied by atmospheric and oceanic carbon dioxide data and models . Science 282 , 442 – 446 .  

  7. Fang , C. and Moncrieff , J. B . 2001 . The dependence of soil CO2 efflux on temperature . Soil Biol. Biochem . 33 , 155 – 165 .  

  8. GLOBALVIEW-CO 2. 2001. Cooperative Atmospheric Data Integration Project - Carbon Dioxide. CD-ROM, NOAA/CMDL, Boulder, Colorado. (Also available on In-ternet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW).  

  9. Haszpra , L . 1999 . On the representativeness of carbon diox-ide measurements . J. Geophys. Res . 104 , 26953-26 960 .  

  10. Higuchi , K. , Trivett , N. B. A. , Shashlcov , A. , Leeder , L. and Ernst , D . 1999 . In situ CO2 measurements. In: Canadian Baseline Program Summary of Progress to 1998. Atmospheric Environment Service , Environment Canada , Toronto , Canada .  

  11. IPCC . 2001. Climate Change 2001 : The Scientific Basis. (eds. J. T. Houghton , Y. Ding , D. J. Griggs , M. Noguer , P. J. van der Linden , X. Dai , K. Maskell and C. A. Johnson ). Cambridge University Press , Cambridge, U.K. and New York, U.S.A. 881pp.  

  12. Inoue , H. Y. and Matsueda , H . 2001 . Measurements of at-mospheric CO2 from a meteorological tower in Tsukuba, Japan . Tellus 53B , 205 – 219 .  

  13. Keeling , C. D. , Chin , J. F. S. and Whorf , T. P . 1996 . Increased activity of northern vegetation inferred from atmospheric CO2 measurements . Nature 382 , 146 – 149 .  

  14. Kondo , H. , Saigusa , N. , Murayama , S. , Yamamoto , S. and Kannari , A . 2001 . A numerical simulation of the daily variation of CO2 in the central part of Japan-summer case . J. MeteoroL Soc. Jpn . 79 , 11 – 21 .  

  15. Lee , M. , Nalcane , K. , Nalcatsubo , T. , Mo , W. and Koizumi , H . 2002 . Effects of rainfall events on soil CO2 flux in a cool-temperate deciduous broad-leaved forest . EcoL Res . 17 , 401 – 410 .  

  16. Levin , I. , Graul , R. and Trivett , N. B. A. 1995. Long term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B, 23 – 34.  

  17. Lloyd , J. and Taylor , J. A . 1994 . On the temperature depen-dence of soil respiration . Funct. Ecol . 8 , 315 – 323 .  

  18. Mariko , S. , Nishimura , N. , Mo , W. , Matsui , Y. , Kibe , T. and Koizumi , H . 2000 . Winter CO2 flux from soil and snow surfaces in a cool-temperate deciduous forest, Japan . EcoL Res . 15 , 363 – 372 .  

  19. Matsueda , H. , Inoue , H. Y. and Ishii , M . 2002 . Aircraft ob-servation of carbon dioxide at 2-13 km altitude over the western Pacific from 1993 to 1999 . Tellus 54B , 1 – 21 .  

  20. Morimoto , S. , Nalcazawa , T. , Higuchi , K. and Aoki , S . 2000. Latitudinal distribution of atmospheric CO2 sources and sinks inferred by 313C measurements from 1985 to 1991. J. Geophys. Res . 105 , 24315 – 24326.  

  21. Nakazawa , T. , Ishizawa , M. , Higuchi , K. and Trivett , N. B. A . 1997a . Two curve fitting method applied to CO2 flask data . EnvironMetrics 8 , 889 – 906 .  

  22. Nakazawa , T. , Murayama , S. , Toi , M. , Ishizawa , M. , Otonashi , K. , Aoki , S. and Yamamoto , S . 1997b . Tem-poral variations of the CO2 concentration and its carbon and oxygen isotopic ratios in a temperate forest in the cen-tral part of the main island of Japan . Tellus 49B , 364 – 381 .  

  23. Nakazawa , T. , Sugawara , S. , Inoue , G. , Machida , T. , Mak-shutov , S. and Mukai , H . 1997c . Aircraft measurements of the concentrations of CO2, CH, N20 and CO and the carbon and oxygen isotopic ratios of CO2 in the troposphere over Russia . J. Geophys. Res . 102 , 3843 – 3859 .  

  24. Raich , J. W. and Schlesinger , W. H . 1992 . The global car-bon dioxide flux in soil respiration and its relationship to vegetation and climate . Tellus 44B , 81 – 99 .  

  25. Raich , J. W. , Potter , C. S. and Bhagawati , D . 2002 . Inter-annual variability in global soil respiration, 1980-1994 . Global Change Biol . 8 , 800 – 812 .  

  26. Rey , A. , Pegoraro , E. , Tedeschi , V. , Parri , I. D. , Jarvis , P. G. and Valentini , R . 2002 . Annual variation in soil respiration and its components in a coppice oak forest in Central Italy . Global Change Biol . 8 , 851 – 866 .  

  27. Saigusa , N. , Yamamoto , S. , Murayama , S. , Gamo , M. , Kondo , H. , Fujinuma , Y. and Hirano , T . 2001 . A long-term flux measurement over a cool-temperate deciduous forest by the eddy covariance method. In : Proc. International Workshop for Advanced Flux Network and Flux Evalua-tion, CGER -ReportM 011 . 145 – 148 .  

  28. Saigusa , N. , Yamamoto , S. , Murayama , S. , Kondo , H. and Nishimura , N . 2002 . Gross primary production and net ecosystem exchange of a cool-temperate deciduous for-est estimated by the eddy covariance method . Agric. For Meteorol . 112 , 203 – 215 .  

  29. Tanaka , M. , Nalcazawa , T. , Shiobara , M. , Ohshima , H. , Aoki , S. , Fukabori , M. , Kawaguchi , S. , Yamanouchi , T. , Makino , Y. and Murayama , H . 1987 . Variations of atmospheric carbon dioxide concentration at Syowa station (69°00'S, 39°35'E), Antarctica . Tellus 39B , 72 – 79 .  

  30. Tans , P. P. , Fung , I. Y. and Takahashi , T . 1990 . Observational constraints on the global atmospheric CO2 budget . Science 247 , 1431 – 1438 .  

  31. Yamamoto , S. , Murayama , S. , Saigusa , N. and Kondo , H . 1999 . Seasonal and inter-annual variation of CO2 flux be-tween a temperate forest and the atmosphere in Japan . Tellus 51B , 402 – 413 .  

comments powered by Disqus