Start Submission Become a Reviewer

Reading: Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates

Download

A- A+
Alt. Display

Original Research Papers

Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates

Authors:

T. Roy ,

Antarctic Cooperative Research Centre, GPO Box 252-80, Hobart, Tasmania, 7001, AU
X close

P. Rayner,

CSIRO Atmospheric Research, Aspendale, Victoria, AU
X close

R. Matear,

Antarctic Cooperative Research Centre, GPO Box 252-80, Hobart, Tasmania, 7001; CSIRO Marine Research, Hobart, Tasmania, AU
X close

R. Francey

CSIRO Atmospheric Research, Aspendale, Victoria, AU
X close

Abstract

Using an atmospheric inversion model we investigate the southern hemisphere ocean CO2 uptake. From sensitivity studies that varied both the initial ocean flux distribution and the atmospheric data used in the inversion, our inversion predicted a total (ocean and land) uptake of 1.65–1.90 Gt C yr−1. We assess the consistency between the mean southern hemisphere ocean uptake predicted by an atmospheric inversion model for the 1991–1997 period and the T99 ocean flux estimate based on observed ΔpCO2 in Takahashi et al. (2002; Deep-Sea Res II, 49, 1601–1622). The inversion can not match the large 1.8 Gt C yr−1 southern extratropical (20–90°S) uptake of the T99 ocean flux estimate without producing either unreasonable land fluxes in the southern mid-latitudes or by increasing the mismatches between observed and simulated atmospheric CO2 data. The southern extratropical uptake is redistributed between the mid and high latitudes. Our results suggest that the T99 estimate of the Southern Ocean uptake south of 50°S is too large, and that the discrepancy reflects the inadequate representation of wintertime conditions in the T99 estimate.

How to Cite: Roy, T., Rayner, P., Matear, R. and Francey, R., 2003. Southern hemisphere ocean CO2 uptake: reconciling atmospheric and oceanic estimates. Tellus B: Chemical and Physical Meteorology, 55(2), pp.701–710. DOI: http://doi.org/10.3402/tellusb.v55i2.16749
  Published on 01 Jan 2003
 Accepted on 12 Dec 2002            Submitted on 29 Jan 2002

References

  1. Bousquet , P. , Peylin , P. , Ciais , P. , Ramonet , M. and Monfray , P . 1999. Inverse modelling of annual atmospheric CO2 sources and sinks 2. Sensitivity study. Geophys. Res. 104 , 26179 – 26193.  

  2. Bousquet , P. , Peylin , P. , Ciais , P. , Quere , C. L. , Friedlingstein , P. and Tans , P. P . 2000 . Regional changes in carbon dioxide fluxes of land and oceans since 1980 . Science 290 , 1342 – 1346 .  

  3. Ciais , P. , Tans , P. P. , White , J W. C. , Trolier , M. , Francey , R. J. , Berry , J. A. , Randall , D. R. , Sellers , P. J. , Collatz , J. G. and Schimel , D. S . 1995 . Partitioning of ocean and land uptake of CO2 as inferred by 313C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network . J. Geophys. Res . 100 , 5051 – 5070 .  

  4. Denning , A. S. , Fung , I. Y. and Randall , D . 1995 . Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota . Nature 376 , 240 – 243 .  

  5. Denning , A. S. , Holzer , M. , Gurney , K. R. , Heimann , M. , Law , R. M. , Rayner , P . J Fung, I. Y., Fan, S. M., Taguchi, S., Friedlingstein, P., Ballcanski, Y., Taylor, J Maiss, M. and Levin, I. 1999 Three—Dimensional Transport and Concentration of SF6: A Model Intercomparison Study (TransCom 2). Tellus 51B, 266 – 297.  

  6. Enting , I. G. , Trudinger , C. M. and Francey , R. J . 1995 . A synthesis inversion of the concentration and 313C of atmo-spheric CO2 . Tellus 47B , 35 – 52 .  

  7. Gruber , N . 1998 . Anthropogenic CO2 in the Atlantic Ocean . Global Biogeochem. Cycles 12 , 165 – 191 .  

  8. Gloor , M. , Gruber , N. , Sarmiento , J. L. , Sabine , C. S. , Feely , R. A. and Roedenbeck , C . 2002. A first estimate of present and pre—industrial air—sea CO2 flux patterns based on ocean carbon measurements. Geophys.Res. Lett. (in Press).  

  9. Gruber , N. , Sarmiento , J. L. and Stocker , T. E 1996 . An improved method for detecting anthropogenic CO2 in the oceans . Global Biogeochem. Cycles 10 , 809 – 837 .  

  10. Gurney , K. R. , Law , R. M. , Denning , S. , Rayner , P . J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J Maki, T., Malcsyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J Sarmiento, J., Taguchi, S., Takahashi, T. and Yuen, C. W. 2002. Towards robust re-gional estimates of CO2 sources and sinks using atmo-spheric transport models. Nature 415, 626 – 630.  

  11. Keeling , C. D. , Piper , S. C. and Heimann , M. 1989. A Three-dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. In: Aspects of climate variability in the Pacific and the Western Americas, Geophysical Monograph 55 (ed. D. H. Peterson ). AGU, Washington, USA, 305 – 363  

  12. Langenfelds , R. L. , Francey , R . J., Steele, L. P., Keeling, R. F., Battle, M. and Budd, W. F. 1999. Measurements of 02/1\12 ratio from the Cape Grim Air Archive and three indepen-dent flask sampling programs. In: Baseline Atmospheric Program Australia 1996 (eds. A. L. Dick J. L. Gras, N. Derek and N. W. Tindale). Bureau of Meteorology and CISRO Division of Atmospheric Research.  

  13. Law , R. M. and Rayner , P. J. 1999. Impacts of seasonal co-variance on CO2 inversions. Global Biogeochem. Cycles 13, 845 – 856.  

  14. Law , R. M. , Rayner , P. J. , Denning , A. S. , Erickson , D. , Fung , I. Y. , Heimann , M. , Piper , S. C. , Ramonet , M. , Taguchi , S. , Taylor , J. A , Trudinger , C. M. and Watterson , I. G. 1996. Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions. Global Biogeochem. Cycles 10 , 783 – 796.  

  15. Matear , R. J. , and Hirst , A. C. 1999 Climate change feedback on the future oceanic CO2 uptake. Tellus 51B , 722 – 733. Metzl , N. , Poisson , A. , Louanchi , F. , Brunet , C. , Schauer , B. and Bres , B. 1995. Spatio-temporal distributions of the air—sea fluxes of CO2 in the Indian and Antarctic oceans. Tellus 47B , 56 – 59.  

  16. Metzl , N. , Tilbrook , B. and Poisson , A . 1999 The annual fCO2 cycle in the sub-Antarctic Ocean . Tellus 51B , 849 – 861 .  

  17. Randerson , J. , Thompson , M. V, Conway, T. J., Fung, I. Y. and Field, C. B. 1997. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmo-spheric carbon dioxide. Global Biogeochem. Cycles 11, 535 – 560.  

  18. Rayner , P. J. , Enting , I. G. , Francey , R. J. and Langenfelds , R. L. 1999 Reconstructing the recent carbon cycle from atmospheric CO2, 13C and 02/N2 observations. Tellus 51B, 213 – 232.  

  19. Takahashi , T. , Feely , R. A. , Weiss , R. E , Wanninkhof , R. H. , Chipman , D. W. , Sutherland, S. C. and Takahashi, T. T. 1997. Global air—sea flux of CO2. Proc. Nati. Acad. Sci. 94, 8292 – 8299.  

  20. Takahashi , T. , Sutherland , S. C. , Sweeney , C. , Poisson , A. , Metzl , N. , Tilbrook , B. , Bates , N. , Wanninkhof , R. , Feely , R. A , Sabine , C. , Olafsson, J. and Nojiri, Y. 2002. Global sea—air CO2 flux based on climatological surface ocean pCO2, and seasonal, biological and temperature effects. Deep-Sea Res. 11 49, 1601 – 1622.  

  21. Tans , P. P. , Fung , I. Y. and Takahashi , T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247, 1431 – 1438.  

comments powered by Disqus