Start Submission Become a Reviewer

Reading: Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport

Download

A- A+
Alt. Display

Original Research Papers

Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport

Authors:

C. Rödenbeck ,

Max Planck Institute for Biogeochemistry, P.O. Box 10 01 64, D-07701 Jena, DE
X close

S. Houweling,

Max Planck Institute for Biogeochemistry, P.O. Box 10 01 64, D-07701 Jena, DE
X close

M. Gloor,

Max Planck Institute for Biogeochemistry, P.O. Box 10 01 64, D-07701 Jena, DE
X close

M. Heimann

Max Planck Institute for Biogeochemistry, P.O. Box 10 01 64, D-07701 Jena, DE
X close

Abstract

The use of inverse calculations to estimate surface CO2 fluxes from atmospheric concentration measurements has gained large attention in recent years. The success of an inversion will, among other factors, depend strongly on how realistically atmospheric tracer transport is represented by the employed transport model, as it links surface CO2 fluxes to modelled concentrations at the location of measurement stations. We present sensitivity studies demonstrating that transport modelling should be based on interannually varying meteorology, as compared to the traditional use of repeating a single year’s winds only. Moreover, we propose an improved procedure of representing the concentration sampling in the model, which allows consistency with the measurements and uses their information content more efficiently. In further sensitivity tests, we estimate the effect of different spatial transport model resolutions and different meteorological driver data sets. Finally, we assess the quality of the inversion results with the help of independent measurements and flux estimates, and preliminarily discuss some of the resulting features.

How to Cite: Rödenbeck, C., Houweling, S., Gloor, M. and Heimann, M., 2003. Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport. Tellus B: Chemical and Physical Meteorology, 55(2), pp.488–497. DOI: http://doi.org/10.3402/tellusb.v55i2.16707
1
Views
1
Downloads
  Published on 01 Jan 2003
 Accepted on 11 Oct 2002            Submitted on 2 Jan 2002

References

  1. Andres , R. J. , Marland , G. , Fung , I. and Matthews , E . 1997. Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell ba-sis: 1950 to 1990. NIP-058, Oak Ridge National Lab-oratory, Oak Ridge, Tennessee, USA. http: //cdiac . esd.ornl.gov/ftp/ndp058/  

  2. Bousquet , P. , Peylin , P. , Ciais , R , LeQuere , C. , Friedlingstein , P. and Tans , P. P . 2000 . Regional changes in carbon dioxide fluxes of land and oceans since 1980 . Science 290 , 1342 – 1346 .  

  3. Brenkert , A. L . 1998. Carbon dioxide emission estimates from fossil fuel burning, hydraulic cement production, and gas flaring for 1995 on a one degree grid cell bases. NDP-058A, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. http: //cdiac . esd. ornl.gov/ftp/ ndp058a/  

  4. Conway , T. J. , Tans , P. P. , Waterman , L. S. and Thoning , K. W . 1994 . Evidence for interannual variability of the carbon cycle from the national oceanic and atmospheric administration climate monitoring and diagnostics labo-ratory global air sampling network . J. Geophys. Res . 99 , 22831 – 22855 .  

  5. Dargaville , R. J. , Law , R. M. and Pribac , F . 2000 . Impli-cations of interannual variability in atmospheric circula-tion on modeled CO2 concentrations and source estimates . Global Biogeochem. Cycles 14 , 931 – 943 .  

  6. Gibson , R. , Milberg , P. and Uppsala , S . 1997 . The ECMWF re-analysis (ERA) project . ECMWF Newsletter 73 , 7 – 11 .  

  7. Giering , R. and Kaminski , T . 1998 . Recipes for adjoint code construction . ACM Trans. Math. Software 24 , 437 – 474 .  

  8. Gloor , M. , Fan , S. , Pacala , S. and Sarmiento , J . 1999 . A model-based evaluation of inversions of atmospheric trans-port using annual mean mixing ratios to monitor fluxes of nonreactive trace substances like CO2 on a continental scale . J. Geophys. Res . 104 , 14245 – 14260 .  

  9. Gurney , K. and coauthors, 2002. Towards robust regional es-timates of CO2 sources and sinks using atmospheric trans-port models. Nature 415, 626 – 630.  

  10. Heimann , M . 1996. The global atmospheric transport model TM2. Tech. Rep. 10 Max-Planck-Inst. fiir Meteorologie, Hamburg, Germany.  

  11. Houweling , S. , Dentener , F. , Lelieveld , J. , Walter , B. and Dlugokencky , E . 2000 . The modeling of tropospheric methane: How well can point measurements be repro-duced by a global model? J. Geophys. Res . 105 , 8981 – 9002 .  

  12. Kalnay , E. and coauthors, 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. MeteoroL Soc. 77, 437 – 471.  

  13. Kaminski , T. , Heimann , M. and Giering , R . 1999 . A coarse grid three-dimensional global inverse model of the atmo-spheric transport - 2. Inversion of the transport of CO2 in the 1980s . J. Geophys. Res . 104 , 18555 – 18581 .  

  14. Kaminski , T. , Rayner , P. , Heimann , M. and Enting , I . 2001 . On aggregation errors in atmospheric transport inversions . J. Geophys. Res . 106 , 4703 – 4715 .  

  15. Law , R . 1996 . The selection of model-generated CO2 data: A case study with seasonal biospheric sources . Tellus 48B , 474 – 486 .  

  16. Le Quere , C. , On , J. C. , Monfray , P. and Aumont , 0. 2000. Interannual variability of the oceanic sink of CO2 from 1979 through 1997. Global Biogeochem. Cycles 14 , 1247 – 1265 .  

  17. Marland , G. , Boden , T. and Andres , R. J . 2000. Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring : 1751 - 1997 . http://cdiac.esd.ornl.gov/ftp/ndpO3O/globalg7.ems  

  18. McGuire , A. D. and coauthors, 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles 15, 183 – 206.  

  19. Ramonet , M. and Monfray , P . 1996 . CO2 baseline concept in 3-D atmospheric transport models , Tellus 48B , 502 – 520 .  

  20. Rayner , P. J. , Enting , I. G. , Francey , R. J. and Langenfelds , R . 1999 . Reconstructing the recent carbon cycle from at-mospheric CO2, 31-3CO2 and 02/N2 observations . Tellus 51B , 213 – 232 .  

  21. Sarmiento , J. L. and Sundquist , E. T . 1992 . Revised budget for the oceanic uptake of anthropogenic carbon dioxide . Nature 356 , 589 – 593 .  

  22. Takahashi , T. and coauthors, 1999. Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air pCO2 difference. Proc. 2nd CO2 in Oceans Symposium (Tsukuba, Japan).  

  23. Tans et al . 1990 . Observational constraints on the global at-mospheric CO2 budget . Science 247 , 4131 – 1438 .  

  24. Tarantola , A . 1987 . Inverse problem theory, methods for data fitting and model parameter estimation . Elsevier , New York .  

  25. Wanninkhof , R . 1992 . Relationship between wind speed and gas exchange . J. Geophys. Res . 97 , 7373 – 7382 .  

comments powered by Disqus