Start Submission Become a Reviewer

Reading: Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-...

Download

A- A+
Alt. Display

Original Research Papers

Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach: I. Using remotely sensed data and ecological observations of net primary production

Authors:

Ying Ping Wang ,

CSIRO Atmospheric Research, Private Bag 1, Aspendale, Victoria 3195, AU
X close

Damian J. Barrett

CSIRO Plant Industry, GPO Box 1600, ACT 2601, Australia and Cooperative Research Centre for Greenhouse Accounting, GPO Box 475 Canberra, ACT, 2601, AU
X close

Abstract

We have developed a modelling framework that synthesizes various types of field measurements at different spatial and temporal scales. We used this modelling framework to estimate monthly means and their standard deviations of gross photosynthesis, total ecosystem production, net primary production (NPP) and net ecosystem production (NEP) for eight regions of the Australian continent between 1990 and 1998. Annual mean NPP of the Australian continent varied between 800 and 1100 Mt C yr−1 between 1990 and 1998, with a coefficient of variation that is defined as the ratio of standard deviation and mean between 0.24 and 0.34. The seasonal variation of NPP for the whole continent varied between 50 and 110 Mt C month−1 with two maxima, one in the autumn and another in the spring. NEP was most negative in the winter (a carbon sink) and was most positive (a carbon source) in the summer. However, the coefficient of variation of monthly mean NEP was very large (> 4), and consequently confidence in the predicted net carbon fluxes for any month in the period 1990–1998 for the whole continent was very low. A companion paper will apply atmospheric inverse technique to measurements of CO2 concentration to further constrain the continental carbon cycle and reduce uncertainty in estimated mean monthly carbon fluxes.

How to Cite: Wang, Y.P. and Barrett, D.J., 2003. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach: I. Using remotely sensed data and ecological observations of net primary production. Tellus B: Chemical and Physical Meteorology, 55(2), pp.270–289. DOI: http://doi.org/10.3402/tellusb.v55i2.16706
  Published on 01 Jan 2003
 Accepted on 30 Sep 2002            Submitted on 11 Feb 2002

References

  1. Amthor , J. S. and members of the Ecosystems Working Group. 1998. Terrestrial Ecosystem Responses to Global Change: a research strategy. ORNL Technical Memoran-dum 1998/27, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37 pp.  

  2. Attiwill , P. M . 1979 . Nutrient cycling in a Eucalyp-tus obliqua (L'Herit.) forest. BI Growth, biomass, and net primary production . Austr J. BoL 27 , 439 – 458 .  

  3. AUSLIG 1990 . Atlas of Australian resources . Third Series, Volume 6, Australian Surveying and Land Information Group , Canberra , Australia .  

  4. Barrett , D. J . 2001 . NPP Multi-Biome: VAST calibration data , 1965-1998 . Available on-line [ http://www.daac.ornl.gov/ ] from Oak Ridge National Laboratory Dis-tributed Active Archive Research Center , Oak Ridge Ten-nessee , USA .  

  5. Barrett , D. J. and Xu , H. Y . 2003 . Parameterisation of a large-scale terrestrial carbon cycle model by a constrained genetic algorithm using multiple data sets of ecological observations from minimally disturbed sites . Global Bio-geochem. Cycles , in press .  

  6. Barrett , D. J. , Galbally , I. E. and Graetz , R. D. 2001. Quanti-fying uncertainty in estimates of C-emissions from above-ground biomass due to historical land-use change to crop-ping in Australia. Global Change Biol. 7, 833 – 902.  

  7. Biraud , S. , Ciais , P. , Ramonet , M. , Simmonds , P. , Kazan , V. , Monfray , R , 0 ' Doherty, S., Spain, T. G. and Jennings, S. G. 2000. European greenhouse gas emissions estimated from continuous atmospheric measurements and radon-222 at Mace Head, Ireland. J. Geophys. Res . 105 , 1351 – 1366.  

  8. Bureau of Meteorology , 1988 . Climatic averages Australia . Australian Government Publishing Service , Canberra , Australia .  

  9. Carswell , E E. , Wandelli , E. V. , Bonates , L. C. M. , Kruijt , B. , Barbosa , E. M. , Nobre , A. S. , Grace , J. and Jarvis , P. G. 2000. Photosynthetic capacity in a central Amazonia rainforest. Tree Physiol. 20, 179 – 186.  

  10. Cliff , A. D. and Ord , J. K . 1981 . Spatial processes: models and applications . Pion Ltd , London , UK . 266 pp .  

  11. Cramer , W. , Kicklighter , D. W. , Bondeau , A. and coau-thors. 1999. Comparing global models of terrestrial net pri-mary productivity (NPP): overview and key results. Global Change Biol. 5, 1 – 15.  

  12. De Fries , R. S. , Townshend , J. R. G. and Hansen , M. C . 1999 . Continuous fields of vegetation characteristics at the global scale at 1-km resolution . J. Geophys. Res . 104 , 16911 – 16923 .  

  13. Denning , A. S. , Collatz , J. G. , Zhang , C. , Randall , D. A. , Berry , J. A. , Sellers , P. J. , Colello, G. D. and Dazlich, D. A. 1996. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part I: Surface carbon fluxes. Tellus 48, 521 – 542.  

  14. Eamus , D. and Prichard , H . 1998 . A cost-benefit analysis of leaves of four Australian savanna species . Tree Physiol . 18 , 537 – 545 .  

  15. Falge , E. , Baldocchi , D. , Tenhunen , J. and coauthors. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 107, 43 – 49.  

  16. Farquhar , G. D. and von Caemmerer , S . 1982. Modelling of photosynthetic response to environmental conditions. In: Physiological plant ecology II: water relations and carbon assimilation, Encyclopedia of Plant Physiology, New Se-ries, Vol 12B (eds. 0. L. Lange, P. S. Nobel, C. B. Osmond and H. Ziegler). Springer-Verlag, Berlin, 549 – 587  

  17. Ferrar , P. J. 1988. Bibliography of Australian native plants. Part I. Photosynthetic responses. Research School of Bio-logical Sciences, Australian National University, 81 pp.  

  18. Field , C. B. , Randerson , J. T. and Malmström , C. M . 1995 . Global net primary production: combining ecology and remote sensing . Remote Sensing Environ . 51 , 74 – 88 .  

  19. Field , C. B. , Behrenfeld , M. J. , Randerson , J. T. and Fallcowski , P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237 – 239.  

  20. Gifford , R. M. , Cheney , N. R , Noble , J. C. , Russell , J. S. , Wellington , A. B. and Zammit , C . 1992. Australian land use, primary production of vegetation and carbon pools in relation to atmospheric carbon dioxide concentration. In: Australia's renewable resources: sustainability and global change (eds. R. M. Gifford and M. M. Barson ). Bureau of Rural Resources Proceedings No. 14, Australian Govern-ment Publishing Service, Canberra, Australia, 151 – 187  

  21. Gutman , G. and Ignatov , A . 1998 . The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models . Int. J. Remote Sens-ing 19 , 1533 – 1543 .  

  22. Hanba , Y. T. , Miyazawa , S. , Kogami , H. and Terashima , I . 2001 . Effects of leaf age on internal CO2 transfer conduc-tance and photosynthesis in tree species having different types of shoot phenology . Austr J. Plant Physiol . 28 , 1075 – 1084 .  

  23. IPCC , 1996 . Climate change 1995: the science of climate change . Cambridge University Press, UK , 572 pp .  

  24. Kirschbaum , M. U. F . 1999a. The effect of climate change on forest growth in Australia. In: Impacts of global change on Australian temperate forests (eds. S. M. Howden and J. T. Gorman ). Bureau of Resources Science Working Paper Series No 99/08, Canberra, Australia, 62 – 68  

  25. Kirschbaum , M. U. F . 1999b . CenW, a forest growth model with linked carbon, energy, nutrient and water cycles . EcoL Mod . 181 , 17 – 59 .  

  26. Kowalczyk , E. A. , Garratt , J. R. and Krummel , P. B . 1994. Implementation of a soil-canopy scheme into the CSIRO GCM-regional aspects of the model response. CSIRO Di-vision of Atmospheric Research technical paper, no. 32, Melbourne, 59 pp.  

  27. Leuning , R . 1990 . Modeling stomatal behaviour and photo-synthesis of Eucalyptus grandis . Austr J. Plant Physiol . 17 , 159 – 175 .  

  28. Leuning , R . 1998 . Scaling to a common temperature im-proves the correlation between the photosynthesis param-eter Jmax and licinax . J. Exp. Bot . 48 , 345 – 347 .  

  29. Leuning , R. , Kelliher , F. M. , DePury , D. G.G. and Schultz , E. D . 1995 . Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies . Plant, Cell and Environ . 18 , 1183 – 1200 .  

  30. Leuning , R. , Dunin , F. X. and Wang , Y. P . 1998 . A two-leaf model for canopy conductance, photosynthesis and parti-tioning of available energy. II. Comparison with measure-ments . Agric. For MeteoroL 91 , 113 – 125 .  

  31. Lloyd , J. , Grace , J. , Miranda , A. C. , Meir , P. , Wong , S. C. , Miranda , H. S. , Wright , I. R. , Gash , J. H.C. and McIntyre , J . 1995 . A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties . Plant, Cell Environ . 18 , 1129 – 1145 .  

  32. McGregor , J. L. and Walsh , K. J. 1994. Climate change simu-lations of Tasmanian precipitation using multiple nesting. J. Geophys. Res . 99 , 20889 – 20905.  

  33. McKenzie , N. and Hook , J. 1992. Interpretations of the Atlas of Australian Soils. Consulting Report to the Environmen-tal Resources Information Network, Tech. Rep. 94/1992. CSIRO, Division of Soils, Canberra, Australia.  

  34. Nadelhoffer , K. J. and Raich , J. W. 1992. Fine root produc-tion estimates and belowground carbon allocation in forest ecosystems. Ecology 73, 1139 – 1147.  

  35. Norby , R. J. , Gunderson C. A., Wullschledger S. D., O'Neil, E. G. and McCracken, M. K. 1992. Productivity and com-pensatory responses of yellow-poplar trees in elevated CO2. Nature 354, 322 – 324.  

  36. Pittock , A. B. and Nix , H. A . 1986 . The effect of changing climate on Australian biomass production-a preliminary study . Clim. Change 8 , 243 – 255 .  

  37. Raupach , M. R . 1998 . Influences of local feedbacks on land-air exchange of energy and carbon . Global Change Biol . 4 , 477 – 494 .  

  38. Raupach , M. R. , Kirby , M. , Barrett , D. J. and Briggs , P. 2001. Balances of water, carbon, nitrogen and phosphorus in Australian landscapes. CSIRO Land and Water Technical Report 40/01 , December 2001. 39 pp.  

  39. Roderick , M. L. , Farquhar , G. D. , Berry , S. L. and Noble , I. R. 2001. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129 , 21 – 30.  

  40. Sellers , P. J. , Tucker , C. J. , Collatz , G. J. , Los , S. O. , Justice , C. O. , Dazlich , D. A. and Randall , D. A. 1994. A global 1 degrees-by-1 degrees NDVI data set for climate studies. 2. The generation of global fields of terrestrial biophysi-cal parameters from the NDVI. Int. J. Remote Sensing 15 , 3519 – 3545.  

  41. Tans , P. P. , Fung , I. Y. and Takahashi , T. 1990. Observational constraints on the global atmospheric carbon dioxide bud-get. Science 247, 1431 – 1438.  

  42. Thoning , K. W. , Tans , P. P. and Komhyr, W. D. 1989. Atmospheric carbon dioxide at Mauna Loa Observatory, 2. Analysis of the NOAA/GMCC data, 1974-1985. J. Geo-phys. Res. 94, 8549 – 8565.  

  43. Turner , J. , Lambert , M. J. and Kelly , J. 1989. Nutrient Cy-cling in a New South Wales subtropical rainforest: organic matter and phosphorus, Ann. Bot. 63, 635 – 642.  

  44. Valentini , R. , Matteucci , G. , Dolman , A. J. and coauthors. 2000 . Respiration as the main determinant of carbon bal-ance in European forests . Nature 404 , 861 – 865 .  

  45. Wang , Y. P. and McGregor , J. L . 2003. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach: II. Atmospheric constraint. Tellus 55B (this issue).  

  46. Wang , Y. P. and Leuning , R . 1998 . A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. I. Model description and comparison with a multi-layered model . Agric. For MeteoroL 91 , 89 – 111 .  

  47. Wang , Y. P. , Rey , A. and Jarvis , P. G. 1998. Carbon bal-ance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations. Global Change Biol. 4, 797 – 807.  

  48. Wang , Y. R , Leuning , R. , Cleugh , H. A. and Coppin , P. A . 2001 . Parameter estimation in surface exchange models using non-linear inversion: how many parameters can we estimate and which measurements are most useful? Global Change Biol . 7 , 495 – 510 .  

  49. Waring , R. H. , Landsberg , J. J. and Williams , M. 1997. Net primary production of forests: a constant fraction of gross primary production. Tree Physiol. 18, 129 – 134.  

  50. Wullschledger , S. D . 1993 . Biochemical limitation to car-bon assimilation in C3 plants-a retrospective analysis of the A/C; curves from 109 species . J. Exp. BM . 44 , 907 – 920 .  

  51. Zeng , X. B. , Dickinson , R. E. , Walker , A. , Shaikh , M. , Defies , R. S. and Qi , J. G. 2000. Derivation and evalu-ation of global 1-km fractional vegetation cover data for land modeling. J. AppL MeteoroL 39, 826 – 839.  

comments powered by Disqus