Start Submission Become a Reviewer

Reading: Reconstruction of past variations of 13C in atmospheric CO2 from its vertical distribution o...

Download

A- A+
Alt. Display

Original Research Papers

Reconstruction of past variations of 13C in atmospheric CO2 from its vertical distribution observed in the firn at Dome Fuji, Antarctica

Authors:

S. Sugawara ,

Institute of Earth Science, Miyagi University of Education, Sendai 980-0845, JP
X close

K. Kawamura,

Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai 980-8578, JP; Climate and Environmental Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, CH
X close

S. Aoki,

Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai 980-8578, JP
X close

T. Nakazawa,

Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai 980-8578, JP
X close

G. Hashida

National Institute of Polar Research, Tokyo 173-8515, JP
X close

Abstract

Temporal variations of δ13C of atmospheric CO2 in the past have been reconstructed from the δ13C values of CO2 observed in firn at Dome Fuji, Antarctica. The effective diffusivities of CO2 in firn were estimated for Dome Fuji and another Antarctic site, H72. The age distributions of 13CO2 in firn were first calculated by using a one-dimensional diffusion model, and then the past values of the atmospheric δ13C were derived by using an iterative procedure so that the calculated and observed vertical profiles of δ13C of CO2 in firn agreed with each other. This reconstruction method was also applied to the CH4 concentration to confirm its validity. The values of the atmospheric δ13C thus estimated were in good agreement with those from direct atmospheric measurements at Syowa Station, Antarctica, even for the levelling off of the secular decrease observed in the first half of the 1990s. The statistical uncertainty of the iterative procedure was examined by adding normal pseudo-random numbers to the observed δ13C values in firn. We also calculated the δ13C values for firn at H72 using the reconstructed history of the atmospheric δ13C, and its vertical profile was found to be in close agreement with the observational result.

How to Cite: Sugawara, S., Kawamura, K., Aoki, S., Nakazawa, T. and Hashida, G., 2003. Reconstruction of past variations of 13C in atmospheric CO2 from its vertical distribution observed in the firn at Dome Fuji, Antarctica. Tellus B: Chemical and Physical Meteorology, 55(2), pp.159–169. DOI: http://doi.org/10.3402/tellusb.v55i2.16700
  Published on 01 Jan 2003
 Accepted on 23 Sep 2002            Submitted on 23 Jan 2002

References

  1. Aoki , S. , Nalcazawa , T. , Murayama , S. and Kawaguchi , S . 1992 . Measurements of atmospheric methane at Japanese Antarctic Station, Syowa . Tellus 44B , 273 – 281 .  

  2. Battle , M. , Bender , M. , Sowers , T. , Tans , P. P. , Butler , J. H. , Ellcins , J. W. , Ellis , J. T. , Conway , T. , Zhang , N. , Lang , P. and Clarke , A. D . 1996 . Atmospheric gas concentrations over the past century measured in air from firn at the South Pole . Nature 383 , 231 – 235 .  

  3. Bender , M. and Battle , M . 1999 . Carbon cycle studies based on the distribution of 02 in air . Tellus 51B , 165 – 169 .  

  4. Crank , J . 1975 . The Mathematics of Diffusion . Clarendon , Oxford , 414 pp .  

  5. Dlugokencky , E. J. , Steele , L. P. , Lang , P.M. and Masarie K. A . 1994 . The growth rate and distribution of atmospheric methane . J. Geophys. Res . 99 , 17 021-17 043 .  

  6. Dlugokencky , E. J. , Masarie , K. A. , Lang , P. M. and Tans , P. P . 1998 . Continuing decline in the growth rate of the atmospheric methane burden . Nature 393 , 447 – 450 .  

  7. Etheridge , D. M. , Steele , L. P. , Francey , R. J. and Langen-felds , R. L . 1998. Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. J. Geophys. Res . 103 , 15979 – 15994.  

  8. Francey , R. J. , Robbins , F. J. , Allison , C. E. and Richards , N. G . 1990. The CSIRO global survey of CO2 stable iso-topes. In: Baseline Atmospheric Program (Australia) 1988, (eds. S. R. Wilson and G. P. Ayers ), Department of Ad-ministrative Service/Bureau of Meteorology in coopera-tion with CSIRO Division of Atmospheric Research Cape Grim BAPS, Tasmania, Australia, 16 – 27  

  9. Francey , R. J. , Allison , C. E. , Etheridge , D. M. , Trudinger , C. M. , Enting , I. G. , Leuenberger , M. , Langenfelds , R. L. , Michel , E. and Steele , P. L . 1999 . A 1000-year high precision record of 313C in atmospheric CO2 . Tellus 51B , 170 – 193 .  

  10. Friedli , H. , Siegenthaler , U. , Rauber , D. and Oeschger , H . 1987 . Measurements of concentration, 13012c and 180/160 ratios of tropospheric carbon dioxide over Switzerland . Tellus 39B , 80 – 88 .  

  11. Hirsch , C . 1988 . Thomas algorithm for tridiagonal sys-tems. In: Numerical Computation of Internal and External Flows . Willey, Chichester, Vol . 1 , pp. 505 – 508 .  

  12. Kawamura , K . 2000 . Variations of atmospheric components over the past 340, 000 yr from Dome Fuji deep ice core, Antarctica, Ph . D. Thesis, Tohoku University, Sendai , Japan .  

  13. Kawamura , K. , Nakazawa , T. , Machida , T. , Morimoto , S. , Aoki , S. , Ishizawa , M. , Fujii , Y. and Watanabe, 0. 2000. Variations of the carbon isotopic ratio in atmospheric CO2 over the last 250 yr recorded in an ice core from H15, Antarctica. Polar Meteorol. Glaciol. 14, 47 – 57.  

  14. Keeling , C. D. , Bacastow , R. B. , Carter , A. F. , Piper , S. C. , Whorf , T. R , Heimann , M. , Mook , W. G. and Roeloffzen , H . 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data. AGU Monograph 55, Washington, American Geo-physical Union, 165 – 236  

  15. Keeling , C. D. , Whorf , T. R , Wahlen , M. and van der Plicht , J . 1995 . Interannual extremes in the rate of rise of atmo-spheric carbon dioxide since 1980 , Nature 375 , 666 – 670 .  

  16. Keeling , R. F. , Piper , S. C. and Heimann , M . 1996 . Global and hemispheric CO2 sinks deduced from changes in at-mospheric 02 concentration . Nature 381 , 218 – 221 .  

  17. Leuenberger , M. C. , Lang , C. and Schwander , J . 1999 . Delta15N measurements as a calibration tool for the pa-leothermometer and gas-ice age differences: a case study for the 8200 B.P. event on GRIP ice . J. Geophys. Res . 104 , 22163 – 22170 .  

  18. Morimoto , S. , Nakazawa , T. , Higuchi , K. and Aoki , S . 2000 . Latitudinal distribution of atmospheric CO2 sources and sinks inferred by 313C measurements from 1985 to 1991 . J. Geophys. Res . 105 , 24 315-24 326 .  

  19. Morimoto , S. , Nakazawa , T. , Aoki , S. , Hashida , G. and Ya-manouchi , T . 2001 . Temporal variations of the atmospheric CO2 concentration and isotope ratios observed at Syowa Station, Antarctica, since 1984. In : Sixth International Carbon Dioxide Conference, Extended Abstract , 1 , 205 – 207 .  

  20. Nakazawa , T. , Morimoto , S. , Aoki , S. and Tanaka , M . 1993a . Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan . Tellus 45B , 258 – 274 .  

  21. Nakazawa , T. , Machida , T. , Tanaka , M. , Fujii , Y. , Aoki , S. and Watanabe, 0. 1993b. Atmospheric CO2 concentrations and carbon isotopic ratios for the last 250 yr deduced from an Antarctic ice core, H15. In: Extended Abstracts of the 4th International CO2 Conference, Carqueiranne, France, 13-17 September 1993. World Meteorological Organization, WMO/TD-NO 561.  

  22. Nakazawa , T. , Morimoto S. , Aoki S. and Tanaka M . 1997 . Temporal and spatial variations of the carbon isotopic ra-tio of atmospheric carbon dioxide in the western Pacific region . J. Geophys, Res . 102 , 1271 – 1285 .  

  23. Rommelaere , V , Arnaud , L. and Barnola , J. M . 1997 . Re-constructing recent atmospheric trace gas concentrations from polar firn and bubbly ice data by inverse methods . J. Geophys. Res . 102 , 30 069-30 083 .  

  24. Schwander , J. , 1989. The transformation of snow to ice and the occlusion of gases. In: The Environmental Record in Glaciers and Ice Sheets (eds. H. Oeschger and C. C. Lang-way), John Wiley & Sons, Berlin 53 – 67  

  25. Schwander , J. , Stauffer , B. and Sigg , A . 1988 . Air mixing in firn and the air at pore close-off . Ann. Glaciol . 10 , 141 – 145 .  

  26. Schwander , J. , Barnola , J. M. , Andrie , C. , Leuenberger , M. , Ludin , A. , Raynaud , D. and Stauffer , B . 1993 . The age of the air in the firn and the ice at Summit, Greenland . J. Geophys. Res . 98 , 2831 – 2838 .  

  27. Severinghaus , J. P. , Sowers , T. , Brook , E. J. , Alley , R. B. and Bender , M. L . 1998 . Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice . Nature 391 , 141 – 146 .  

  28. Siegenthaler , U. and Miinnich , K . 0. 1981. 13C/12C fraction-ation during CO2 transfer from air to sea. In: Carbon Cycle Modeling (ed. B. Bolin ), John Wiley, New York, 246 – 257  

  29. Sowers , T. , Bender , M. , Raynaud , D. and Korotkevich , Y. S . 1992 . 315N of N2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age-gas age differences . J. Geophys. Res . 97 , 15 683-15 697 .  

  30. Trolier , M. , White , J. W. C. , Tans , P. P. , Masarie , K. A. and Gemery , P. A . 1996 . Monitoring the isotopic com-position of atmospheric CO2: Measurements from the NOAA Global Air Sampling Network . J. Geophys. Res . 101 , 25 897-25 916 .  

  31. Trudinger , C. M. , Enting , I. G. , Etheridge , D. M. , Francey , R. J. , Levchenlco , V. A. , Steele , L. R , Raynaud , D. and Arnaud , L . 1997 . Modeling air movement and bubble trapping in firn . J. Geophys. Res . 102 , 6747 – 6763 .  

comments powered by Disqus