Start Submission Become a Reviewer

Reading: Calculating isotopic fractionation from atmospheric measurements at various scales

Download

A- A+
Alt. Display

Original Research Papers

Calculating isotopic fractionation from atmospheric measurements at various scales

Authors:

John B. Miller ,

Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado; Institute for Arctic and Alpine Research, University of Colorado, Boulder, Colorado, US
X close

Pieter P. Tans

Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, US
X close

Abstract

In this paper we describe some new approaches for calculating isotopic discrimination from atmospheric measurements of CO2 and δ13C. We introduce a framework that is more flexible than the traditional “Keeling plot” two end-member mixing model, because it allows for the explicit specification of the background values of both CO2 and δ13C. This approach is necessary for evaluating time series for which one can be certain that the Keeling plot requirement of stable background is violated. We also discuss a robust method for curve fitting and for estimating uncertainty of the fitting parameters. In addition to accounting for the uncertainty associated with measurements, we also account for the uncertainty associated with the appropriateness of the analytical model to the data. Our analysis suggests that uncertainty in calculated source signatures is more strongly related to the appropriateness of the model to the data than to the analytical precision of CO2 and δ13C measurements. Relative to our approach, other approaches tend to underestimate the uncertainty in the fitted parameters. There can be substantial uncertainty in slopes and intercepts (two per mil or more) even if R2 is greater than 0.98. In addition, we note that fitting methods not accounting for uncertainty in both x and y result in systematic biases in the fitted parameters. Finally, we discuss the interpretation of the apparent isotopic source signature when this is a composite of several sources.

How to Cite: Miller, J.B. and Tans, P.P., 2003. Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B: Chemical and Physical Meteorology, 55(2), pp.207–214. DOI: http://doi.org/10.3402/tellusb.v55i2.16697
1
Views
  Published on 01 Jan 2003
 Accepted on 2 Sep 2002            Submitted on 17 Jan 2002

References

  1. Bakwin , P. S. , Tans , P. R , White , J. W. C. and Andres , R. J . 1998 . Determination of the isotopic (C-13/C-12) dis-crimination by terrestrial biology from a global network of observations . Global Biogeochem. Cycles 12 , 555 – 562 .  

  2. Bevington , P. R. and Robinson , D. K . 1992. Data reduction and error analysis for the physical sciences, McGraw Hill, Boston.  

  3. Boggs , P. T. , Byrd , R. H. and Schnabel , R. B . 1987 . A stable and efficient algorithm for nonlinear orthogonal distance regression , SIAM J. Sci. Statist. Comput . 8 , 1052 – 1078 .  

  4. Buchmann , N. , Guehl , J. M. , Barigah , T. S. and Ehleringer , J. R . 1997 . Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazo-nian rainforest (French Guiana) . Oecologia 110 , 120 – 131 .  

  5. Conway , T. J. , Tans , P. R , Waterman , L. S. , Thoning , K. W. , Kitzis , D. R. , Massarie , K. A. and Zhang , N . 1994 . Evidence for interannual variability of the carbon cycle for the National Oceanic and Atmospheric Administra-tion/Climate Monitoring Diagnostics Laboratory Global Air Sampling Network . J. Geophys. Res . 99 , 22 831-22 855 .  

  6. Keeling , C. D . 1961 . The concentrations and isotopic abun-dances of atmospheric carbon dioxide in rural and marine air . Geochim. Cosmochim. Acta 24 , 277 – 298 .  

  7. Miller , J. B. , Tans , P. P. , White , J. W. C. , Conway , T. J. and Vaughn , B. W . 2002. The atmospheric signal of terres-trial isotopic discrimination and its implication for carbon fluxes. Tellus 55B, this issue.  

  8. Pataki , D. E. , Ehleringer , J. R. , Flanagan , L. B. , Yalcir , D. , Bowling , D. , Still , C. J. , Buchmann , N. , Kaplan , J. O. and Berry , J. A. 2002. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem. Cycles (in press).  

  9. Press , W. H. , Teukolsky , S. A. , Vetterling , W. T. and Flannery , B. P . 1992. Numerical recipes in C, Cambridge University Press, New York.  

  10. Ricker , 1973 . Linear regressions in fishery research . J. Fish. Res. Board Can . 30 , 409 – 434 .  

  11. Sokal , R. R. and Rohlf , F. J . 1995 . Biometry: the princi-ples and practice of statistics in biological research, W . H. Freeman and Co ., New York .  

  12. Sprent and Dolby , 1980 . The geometric mean functional re-lationship . Biometrics 36 , 547 – 550 .  

  13. Tans , P. P . 1980 . On calculating the transfer of carbon-13 in resevoir models of the carbon cycle . Tellus 32 , 464 – 469 .  

  14. Thoning , K. W. , Tans , P. P. and Komhyr , W. D . 1989 . At-mospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974-1985 . J. Geo-phys. Res . 94 , 8549 – 8565 .  

  15. Trolier , M. , White , J. W. C. , Tans , P. R , Massarie , K. A. and Gemery , P. A . 1996 . Monitoring the isotopic compo-sition of atmospheric CO2: Measurements from the NOAA global air sampling network . J. Geophys. Res . 101 , 25 897-25 916 .  

  16. Yakir , D. and Wang , X.-F . 1996 . Fluxes of CO2 and water be-tween terrestrial vegetation and the atmosphere estimated from isotope measurements . Nature 380 , 515 – 517 .  

  17. York , 1966 . Least-squares fitting of a straight line . Can. J. Phys . 44 , 1079 – 1086 .  

comments powered by Disqus