Start Submission Become a Reviewer

Reading: The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for...

Download

A- A+
Alt. Display

Original Research Papers

The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes

Authors:

John B. Miller ,

Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado; Institute for Arctic and Alpine Research, University of Colorado, Boulder, Colorado, US
X close

Pieter P. Tans,

Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, US
X close

James W. C. White,

Institute for Arctic and Alpine Research, University of Colorado, Boulder, Colorado, US
X close

Thomas J. Conway,

Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado, US
X close

Bruce W. Vaughn

Institute for Arctic and Alpine Research, University of Colorado, Boulder, Colorado, US
X close

Abstract

The 13C:12C ratio in atmospheric carbon dioxide has been measured in samples taken in the NOAA/CMDL network since 1991. By examining the relationship between weekly anomalies in δ13C and CO2 at continental sites in the network, we infer temporal and spatial values for the isotopic signature of terrestrial CO2 fluxes. We can convert these isotopic signatures to values of discrimination if we assume the atmospheric starting point for photosynthesis. The average discrimination in the Northern Hemisphere between 30 and 50°N is calculated to be 16.6 ± 0.2 per mil. In contrast to some earlier modeling studies, we find no strong latitudinal gradient in discrimination. However, we do observe that discrimination in Eurasia is larger than in North America, which is consistent with two modeling studies. We also observe a possible trend in the North American average of discrimination toward less discrimination. There is no apparent trend in the Eurasian average or at any individual sites. However, there is interannual variability on the order of 2 per mil at several sites and regions. Finally, we calculate the northern temperate terrestrial CO2 flux replacing our previous discrimination values of about 18 per mil with the average value of 16.6 calculated in this study. We find this enhances the terrestrial sink by about 0.4 GtC yr−1.

How to Cite: Miller, J.B., Tans, P.P., White, J.W.C., Conway, T.J. and Vaughn, B.W., 2003. The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes. Tellus B: Chemical and Physical Meteorology, 55(2), pp.197–206. DOI: http://doi.org/10.3402/tellusb.v55i2.16696
1
Views
  Published on 01 Jan 2003
 Accepted on 2 Sep 2002            Submitted on 17 Jan 2002

References

  1. Andres , R. J. , Marland , G. and Bischof , S . 1996 . Global and Latitudinal Estimates of 13C from Fossil-Fuel Consumption and Cement Manufacture . Carbon Dioxide Informa-tion and Analysis Center, http : //cdiac.esd.ornl.gov/  

  2. Bakwin , P. S. , Tans , P. R , White , J. W. C. and Andres , R. J . 1998 . Determination of the isotopic (C-13/C-12) dis-crimination by terrestrial biology from a global network of observations . Global Biogeochem. Cycles 12 , 555 – 562 .  

  3. Battle , M. , Bender , M. L. , Tans , P. P. , White , J. W. C. , Ellis , J. T. , Conway , T. and Francey , R. J . 2000 . Global carbon sinks and their variability inferred from atmospheric 02 and 13C . Science 287 , 2467 – 2470 .  

  4. Ciais , P. , Tans , P. P. , White , J. W. C. , Trolier , M. , Francey , R. J. , Berry , J. A. , Randall , D. R. , Sellers , P. J. , Collatz , J. G. and Schimel , D. S . 1995 . Partitioning of ocean and land up-take of CO2 as Inferred by delta-C-13 measurements from the NOAA Climate Monitoring and Diagnostics Labora-tory Global Air Sampling Network . J. Geophys. Res . 100 , 5051 – 5070 .  

  5. Conway , T. J. , Tans , P. R , Waterman , L. S. , Thoning , K. W. , Kitzis , D. R. , Massarie , K. A. and Zhang , N . 1994 . Evidence for interannual variability of the carbon cycle for the National Oceanic and Atmospheric Administra-tion/Climate Monitoring Diagnostics Laboratory Global Air Sampling Network . J. Geophys. Res . 99 , 22 , 831-22 , 855 .  

  6. Farquhar , G. D. , Ehleringer , J. R. and Hubick , K. T . 1989 . Car-bon Isotope Discrimination During Photosynthesis . Ann. Rev. Plant PhysioL Plant MoL Biol . 9 , 121 – 137 .  

  7. Fung , I. , Field , C. B. , Berry , J. A. , Thompson , M. V. , Rander-son , J. T. , Malmstrom , C. M. , Vitousek , P. M. , Collatz , G. J. , Sellers , P. J. , Randall , D. A. , Denning , A. S. , Badeck, E and John, J. 1997. Carbon 13 exchanges between the at-mosphere and biosphere. Global Biogeochem. Cycles 11, 507 – 533.  

  8. Gloor , M. , Bakwin , P. , Hurst , D. , Lock , L. , Draxler , R. and Tans , P . 2001 . What is the concentration footprint of a tall tower? J. Geophys. Res . 106 , 17 , 831-17 , 840 .  

  9. Keeling , C. D . 1961 . The concentrations and isotopic abundances of atmospheric carbon dioxide in rural and marine air . Geochim. Cosmochim. Acta , 24 , 277 – 298 .  

  10. Kroopnilc , P. M. , Margolis , S. V. and Wong , C. S . 1977. In: The fate of fossil fuel in the oceans (eds. N, Anderson and A. Malahoff) Plenum, New York, 295 – 321  

  11. Lloyd , J. and Farquhar , G. D . 1994 . C-13 discrimination dur-ing CO2 assimilation by the terrestrial biosphere . Oecolo-gia 99 , 201 – 215 .  

  12. Marland , G. , Andres , R. J. and Boden , T. A . 1993. In: Trends 193: A compendium of data on global change, Vol. ORNL/CDIAC-65 (eds. T. A. Boden, D. P. Kaiser, R. J. Sepanski and E W. Stoss) Carbon Dioxide Info. Analysis Center, Oak Ridge Natl. Lab., Oak Ridge, Tenn., 505 – 584  

  13. Miller , J. B. and Tans , P. P . 2002. Calculating isotopic dis-crimination from atmospheric measurements at various scales. Tellus 55B, this issue.  

  14. Novelli , P. C. , Masarie , K. A. and Lang , P.M . 1998 . Distribu-tions and recent changes of carbon monoxide in the lower troposphere . J. Geophys. Res . 103 , 19 015-19 033 .  

  15. Potosnak , M. J. , Wofsy , S. C. , Denning , A. S. , Conway , T. J. , Munger , J. W. and Barnes , D. H . 1999 . Influence of biotic exchange and combustion sources on atmospheric CO2 concentrations in New England from observations at a forest flux tower . J. Geophys. Res . 104 , 9561 – 9569 .  

  16. Tans , P. P . 1980 . On calculating the transfer of carbon-13 in resevoir models of the carbon cycle . Tellus 32 , 464 – 469 .  

  17. Tans , P. P. , Berry , J. A. and Keeling , R. F . 1993 . Oceanic 13C/12C observations: A new window on ocean CO2 up-take . Global Biogeochem. Cycles 7 , 353 – 368 .  

  18. Thoning , K. W. , Tans , P. P. and Komhyr , W. D . 1989 . At-mospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974-1985 . J. Geo-phys. Res . 94 , 8549 – 8565 .  

  19. Trenberth , K. E . 1997 . The definition of El Nino . Bull. Am. Meteorol. Soc . 78 , 2771 – 2777 .  

  20. Trolier , M. , White , J. W. C. , Tans , P. R , Massarie , K. A. and Gemery , P. A . 1996 . Monitoring the isotopic compo-sition of atmospheric CO2: Measurements from the NOAA global air sampling network . J. Geophys. Res . 101 , 25 897-25 916 .  

comments powered by Disqus