Start Submission Become a Reviewer

Reading: Cloud condensation nuclei spectra derived from size distributions and hygroscopic properties...

Download

A- A+
Alt. Display

Original Research Papers

Cloud condensation nuclei spectra derived from size distributions and hygroscopic properties of the aerosol in coastal south-west Portugal during ACE-2

Authors:

Ulrike Dusek ,

Department of Atmospheric Sciences, US
X close

David S. Covert,

Department of Atmospheric Sciences, US
X close

Alfred Wiedensohler,

Institut für Troposphärenforschung e.V., Permoserstrasse, DE
X close

Christian Neusüss,

Institut für Troposphärenforschung e.V., Permoserstrasse, DE
X close

Diana Weise,

Institut für Troposphärenforschung e.V., Permoserstrasse, DE
X close

Will Cantrell

Department of Physics, Michigan Technological University, US
X close

Abstract

In this work we propose and test a method to calculate cloud condensation nuclei (CCN) spectra basedon aerosol number size distributions and hygroscopic growth factors. Sensitivity studies show thatthis method can be used in a wide variety of conditions except when the aerosol consist mainly oforganic compounds. One crucial step in the calculations, estimating soluble ions in an aerosol particlebased on hygroscopic growth factors, is tested in an internal hygroscopic consistency study. The resultsshow that during the second Aerosol Characterization Experiment (ACE-2) the number concentrationof inorganic ions analyzed in impactor samples could be reproduced from measured growth factorswithin the measurement uncertainties at the measurement site in Sagres, Portugal.

CCN spectra were calculated based on data from the ACE-2 field experiment at the Sagres site.The calculations overestimate measured CCN spectra on average by approximately 30%, which iscomparable to the uncertainties in measurements and calculations at supersaturations below 0.5%. Thecalculated CCN spectra were averaged over time periods when Sagres received clean air masses and airmasses influenced by aged and recent pollution. Pollution outbreaks enhance the CCN concentrationsat supersaturations near 0.2% by a factor of 3 (aged pollution) to 5 (recent pollution) compared to theclean marine background concentrations. In polluted air masses, the shape of the CCN spectra changes.The clean spectra can be approximated by a power function, whereas the polluted spectra are betterapproximated by an error function.

How to Cite: Dusek, U., Covert, D.S., Wiedensohler, A., Neusüss, C., Weise, D. and Cantrell, W., 2003. Cloud condensation nuclei spectra derived from size distributions and hygroscopic properties of the aerosol in coastal south-west Portugal during ACE-2. Tellus B: Chemical and Physical Meteorology, 55(1), pp.35–53. DOI: http://doi.org/10.3402/tellusb.v55i1.16357
  Published on 01 Jan 2003
 Accepted on 9 Oct 2002            Submitted on 20 Aug 2001

References

  1. Andreae , M. O. , Andreae , T. W. , Annegarn , H. , Beer , J. , Cachier , H. , le Canut , P. , Elbert , W. , Maenhaut , W. , Salma , I. , Wienhold , F. G. and Zenker , T. 1998. Chemical composition of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. J. Geophys. Res . 103 , D24,32119–32128  

  2. Ayers , G. P . 2001 . Comment on regression analysis of air quality data . Atmos. Environ . 35 , 2423 – 2425 .  

  3. Berg , O. H. , Swietlicki , E. , Frank , G. , Martinsson , B. G. , Cederfelt,Laj, P., Ricci, L., Berner, A., Dusek, U.,Galambos, Z., Mesfin, N. S., Yuslciewics, B., Wieden-sohler, A., Stratmann, E and Orsini, D. 1998a. Observed and modeled hygroscopic behavior of atmospheric parti-cles. Contr Atmos. Phys. 71, 47 – 65.  

  4. Berg , O. H. , Swietlicici , E. and Krejci , R. 1998b. Hygro-scopic growth of aerosol particles in the marine bound-ary layer over the Pacific and Southern Oceans during the first Aerosol Characterization Experiment (ACE 1). J. Geophys. Res . 103 , D13,16535–16545  

  5. Berner , A. and Liirzer , C . 1980 . Mass size distributions of traffic aerosols at Vienna . J. Phys. Chem . 84 , 2079 – 2083 .  

  6. Birmili , W. , Stratmann , F. and Wiedensohler , A . 1999 . De-sign of a DMA-based size spectrometer for a large particle size range and stable operation. J. Aerosol Sc i . 30 , 549 – 553 .  

  7. Boers , R. , Jenson , J. B. and Krummel , P. B . 1998 . Micro-physical and short-wave radiative structure of stratocumu-lus clouds over the Southern Ocean: Summer results and seasonal differences . Q. J. R. MeteoroL Soc . 124 , 151 – 168 .  

  8. Brenguier , J. L. , Chuang , P. Y. , Fouquart , Y. , Johnson , D. W. , Parol , F. , Pawlowslca , H. , Pelon , J. , Schueller , L. , Schroeder, E and Snider, J. 2000. An overview of the ACE-2 CLOUDYCOLUMN closure experiment. Tellus 52B, 815 – 827  

  9. Cantrell , W. , Shaw , G. and Benner , R . 1999 . Cloud proper-ties inferred from bimodal aerosol number distributions . J. Geophys. Res . 104 , D22 , 27615 – 27624 .  

  10. Charlson , R. J. , Schwartz , S. E. , Hales , J. M. , Cess , R. D. , Coakley , J. A. , Hansen , J. E. and Hofmann , D. J . 1992.  

  11. Climate forcing by anthropogenic aerosols . Science 255, 423 – 430.  

  12. Chuang , P. Y. , Charlson , R. J. and Seinfeld , J. H . 1997 . Ki-netic limitations on droplet formation in clouds . Nature , 390 , 594 – 596 .  

  13. Chuang , P. Y. , Collins , D. R. , Pawlowski , H. , Snider , J. R. , Jonsson , H. H. , Brenguier , J. L. , Flagan , R. C. and Seinfeld,  

  14. J. H. 2000 . CCN measurements during ACE-2 and their relationship to cloud microphysical properties . Tellus 52B , 843 – 867 .  

  15. Covert , D. S. and Heintzenberg , J . 1993 . Size distributions and chemical properties of aerosol at Ny Alesund, Sval-bard . Atmos. Environ . 27 , 2989 – 2997 .  

  16. Cruz , C. N. and Pandis , S. N . 1998 . The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol . J. Geophys. Res . 103 , D11 , 13111 – 13123 .  

  17. Faccini , M. C. , Decesari , S. , Mirea , M. , Fuzzi , S. and Loglio , S . 2000 . Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon con-tent and chemical composition . Atmos. Environ . 34 , 4853 – 4857 .  

  18. Ferek , R. J. , Hegg , D. A. , Hobbs , P. V , Durkee , P. and Nielsen , K . 1998 . Measurements of ship induced tracks in clouds off the Washington coast . J. Geophys. Res . 103 , D18 , 23199 – 23206 .  

  19. Hudson , J. G . 1989 . An instantaneous CCN spectrometer . J. Atmos. Oceanic Technol . 6 , 1055 – 1065 .  

  20. Hudson , J. G. , Xie , Y. and Yum , S. S . 1998 . Vertical dis-tribution of cloud condensation nuclei spectra over the summertime Southern Ocean . J. Geophys. Res . 103 , D13 , 16609 – 16624 .  

  21. Ji , Q. and Shaw , G. E . 1998 . On supersaturation spectrum and size distributions of cloud condensation nuclei . Geophys. Res. Lett . 25 , 1903 – 1906 .  

  22. Ji , Q. , Shaw , G. E. and Cantrell , W . 1998 . A new instrument for measuring cloud condensation nuclei: Cloud condensa-tion nucleus remover . J. Geophys. Res . 103 , D21 , 28013 – 28019 .  

  23. Kulmala , M. , Laalcsonen , A. , Charlson , R. J. and Korhonen , P . 1997 . Clouds without supersaturation . Nature 388 , 336 – 337 .  

  24. Laaksonen , A. , Korhonen , P. , Kulmala , M. and Charlson , R. J . 1998 . Modification of the Koehler Equation to include sol-uble trace gases and slightly soluble substances. J. Atmos. Sc i . 55 , 853 – 862 .  

  25. Martinsson , B. G. , Frank , G. , Cederfelt , S. I. , Berg , O. H. , Mentes , B. , Papaspiropoulos , G. , Swietlicki , E. , Zhou , J. C. , Flynn , M. , Bower , K. N. , Choularton , T. W. , Mäkeld, J., Virlcicula, A. and VanDingenen, R. 2000. Validation of very high cloud droplet number concetrations in air masses transported thousands of kilometers over the ocean. Tellus 52B, 801 – 814  

  26. Martinsson , B. G. , Karlsson , M. N. A. and Frank , G . 2001 . Methodology to estimate the transfer function of individual differential mobility analyzers . Aerosol Sci. TechnoL 35 , 815 – 823 .  

  27. Nenes , A. , Ghan , S. , Abdul-Razzalc , H. , Chuang , P. Y. and Seinfeld , J. H . 2001 . Kinetic limitations on cloud droplet formation and impact on cloud albedo . Tellus 53B , 133 – 149 .  

  28. Neusiif J. C. , Weise , D. , Birmili , W. , Wex , H. , Wiedensohler , A. and Covert , D. S. 2000. Size-segregated chemical mass closure and number-derived mass closure of the marine aerosol in Sagres , Portugal. Tellus 52B , 169 – 184  

  29. Novakov , T. and Corrigan , C. E . 1996 . Cloud condensation nucleus activity of the organic component of biomass burn-ing smoke . Geophys. Res. Lett . 23 , 2141 – 2144 .  

  30. Novakov , T. and Penner , J. E . 1993 . Large contribution of organic aerosols to cloud-condensation nuclei concentra-tions . Nature 365 , 823 – 826 .  

  31. Potukuchi , S. and Wexler , A. S . 1995 . Identifying solid-aqueous phase transitions in atmospheric aerosols - I. Neutral-acidity solutions . Atmos. Environ . 29 , 1663 – 1676 .  

  32. Pruppbacher , H. R. and Klett , J. D . 1997 . Microphysics of clouds and precipitation . Kluwer Academic , Dordrecht .  

  33. Putaud , J.-P. , van Dingenen , R. , Mangoni , M. , Virkkula , A. , Raes , E , Maring , H. , Prospero , J. M. , Swietlicki , E. , Berg , O. H. , Hillamo, R. and Mäkelä, T. 2000. Chemical closure and assessment of the origin of the submicron aerosol in the marine boundary layer and the free troposphere during ACE-2. Tellus 52B, 141 – 168  

  34. Quinn , P. K. , Anderson , T. L. , Bates , T. S. , Dlugi , R. , Heintzenberg , J. , von Hoyningen-Huene , W. , Kulmala , M. , Russel , P. B. and Swietlicki , E . 1996 . Closure in tro-pospheric aerosol-climate research: A review and future needs for addressing aerosol direct shortwave radiative forcing . Contr. Atmos. Phys . 69 , 547 – 577 .  

  35. Rader , D. J. , and McMurry , P. H . 1986 . Application of the Tandem Differential Mobility Analyzer to studies of droplet grwoth or evaporation. J. Aerosol Sc i . 17 , 771 – 787 .  

  36. Raes , F. , Bates , T. , McGovern, E and Van Liedekerke, M. 2000. The 2nd Aerosol Characterization Experiment (ACE-2): General overview and main results. Tellus 52B, 111 – 125  

  37. Rogge , W. F. , Mazurek , M. A. , Hildemann , L. M. , Cass , G. R. and Simoneit , B. R. T . 1993 . Quantification of urban or-ganic aerosols at a molecular level: Identification, abun-dance and seasonal variation . Atmos. Environ . A 27 , 1309 – 1330 .  

  38. Saxena , P. and Hildemann , L. M . 1996 . Water-soluble or-ganics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds . J. Atmos. Chem . 24 , 57 – 109 .  

  39. Seinfeld , J. H. and Pandis , S. N . 1998 . Atmospheric chemistry and physics . John Wiley & Sons , New York .  

  40. Shulman , M. L. , Jacobson , M. C. , Charlson , R. J. , Syncovec , R. E. and Young , T. E . 1996 . Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets . Geophys. Res. Lett . 23 , 277 – 280 .  

  41. Snider , J. R. and Brenguier , J.-L . 2000 . Cloud condensation nuclei and cloud droplet measurements during ACE-2 . Tel-lus 52B , 828 – 842 .  

  42. Stolzenburg , M. R. and McMurry , P. H . 1988. TDMAFIT user's manual. PTL Publications NO. 653, Particle Tech-nology Laboratory Department of Mechanical Eng., University of Minnesota, Minneapolis, USA.  

  43. Swietlicki , E. , Zhou , J. , Berg , O. H. , Martinsson , B. G. , Frank , G. , Cederfelt , S. I. , Dusek , U. , Berner , A. , Birmili , W. , Wiedensohler , A. , Yuskiewicz, B. and Bower, K. N. 1999. A closure study of sub-micrometer aerosol particle hygro-scopic behavior. Atmos. Res. 50, 205 – 240.  

  44. Swietlicki , E. , Thou , J. , Covert , D. S. , Hämeri , K. , Busch , B. , Väkeva , M. , Dusek , U. , Berg, 0. H., Wiedensohler, A., Aalto, P., Mäkelä, J., Martinsson, B. G., Papaspiropoulos, G., Mentes, B., Frank, G., and Stratmann, F. 2000. Hygro-scopic properties of aerosol particles in the northeastern Atlantic during ACE2. Tellus 52B, 201 – 227  

  45. Tang , I. N . 1997 . Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance . J. Geo-phys. Res . 102 , D2 , 1883 – 1893 .  

  46. Tang , I. N. and Munkelwitz , H. R . 1994 . Water activities, den-sities and refractive indices of aqueous sulfate and sodium nitrate droplets of atmospheric importance . J. Geophys. Res . 99 , D9 , 18801 – 18808 .  

  47. Twomey , S . 1959 . The nuclei of natural cloud formation, Part II: the supersaturation in natural clouds and variation of cloud droplet concentration . Geofis. Pura Appl . 43 , 243 – 249 .  

  48. Twomey , S . 1991 . Aerosols, clouds and radiation . Atmos. Environ . 25 , 2435 – 2442 .  

  49. Twomey , S. , Gall , R. and Leuthold , M . 1987 . Pollution and cloud reflectance . Boundary Layer MeteoroL 41 , 335 – 348 .  

  50. Verver , G. , Raes , F. , Vogelzang , D. and Johnson , D . 2000 . The 2nd Aerosol Characterization Experiment (ACE-2): Meteoroogical and chemical context . Tellus 52B , 126 – 140 .  

  51. Vong , R. J. and Covert , D. S . 1998 . Simultaneous observa-tions of aerosol and cloud droplet size spectra in marine stratocumulus. J. Atmos. Sc i . 55 , 2180 – 2192 .  

  52. Wood , R. , Johnson , D. , Osborne , S. , Andreae , M.O. , Bandy , B. , Bates , T. S. , O'Dowd , C. , Glantz , P. , Noone , K. J. and Quinn , P. K. 2000. Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2. Tellus 52B, 401 – 422  

  53. Yamasoe , M. A. , Artaxo , R , Miguel , A. H. and Allen , G . 2000 . Chemical composition of aerosol particles from di-rect emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements . Atmos. Environ . 34 , 1641 – 1653 .  

comments powered by Disqus