Start Submission Become a Reviewer

Reading: Improving global chemical simulations of the upper troposphere–lower stratosphere with seque...

Download

A- A+
Alt. Display

Original Research Papers

Improving global chemical simulations of the upper troposphere–lower stratosphere with sequential assimilation of MOZAIC data

Authors:

M.-L. Cathala,

Météo-France, Centre National de Recherches Météorologiques, FR
X close

J. Pailleux,

Météo-France, Centre National de Recherches Météorologiques, FR
X close

V.-H. Peuch

Météo-France, Centre National de Recherches Météorologiques, FR
X close

Abstract

The quantity and variety of atmospheric measurements of chemical constituents are strongly increasing, both for in situ and remote-sensing observing systems. This is an incentive to develop data assimilationschemes for atmospheric chemistry models, in the perspective of building realistic three-dimensionaltime-dependent distributions of observed and chemically related non-observed compounds. Sequentialdata assimilation experiments within the global Chemistry and Transport Model MOCAGE have beenconducted, in the perspective of using the MOZAIC database and meteorological analyses to drivea global simulation of ozone and related tracers, focussing specially on the upper troposphere—lowerstratosphere; the chemistry and dynamics in this region of the atmosphere are of great environmentalinterest, yet they are currently very difficult to model. Assimilation of subsonic flight-level observationsof ozone is anticipated to provide a significant contribution to improve numerical simulations. Resultsobtained with two different sequential data assimilation schemes are presented. The experiments havebeen set up on an 8-d period in February 1997. The “non-local” data assimilation technique appearspreferable to the “local” technique tested, since the benefits of assimilation for the former appear toremain for longer, possibly up to 3–4 d in the model integration after the data assimilation phase.

How to Cite: Cathala, M.-L., Pailleux, J. and Peuch, V.-H., 2003. Improving global chemical simulations of the upper troposphere–lower stratosphere with sequential assimilation of MOZAIC data. Tellus B: Chemical and Physical Meteorology, 55(1), pp.1–10. DOI: http://doi.org/10.3402/tellusb.v55i1.16352
  Published on 01 Jan 2003
 Accepted on 19 Sep 2002            Submitted on 20 Aug 2001

References

  1. Bergthorsson , P. and Döös , B. R . 1955 . Numerical weather map analysis . Tellus 7 , 329 – 340 .  

  2. Courtier , P. , Andersson , E. , Heckley , W. , Pailleux , J. , Vasil-jelic , D. , Hamrud , M. , Hollingsworth , A. , Rabier, E and Fisher, M. 1998. The ECMWF implementation of three di-mensional variational assimilation (3D-VAR). Part I: For-mulation , Q. J. R. Meteorol. Soc . 124 , 1783– 1807 .  

  3. Cressman , G . 1959 . An operational objective analysis system. Mon . Wea. Re v . 87 , 367 – 374 .  

  4. Lary , D. J. , Chipperfield , M. P. , Pyle , J. A. , Noton , W. A. and L. P. 1995 . Three-dimensional tracer initialization and gen-eral diagnostics using equivalent PV latitude-potential-temperature coordinates . Q. J. R. MeteoroL Soc . 121 , 187 – 210 .  

  5. Law , K. S. , Plantevin , P.-H. , Thouret , V. , Marenco , A. , As-man , W. A. H. , Lawrence , M. , Crutzen , P. J. , Muller , J.-F. ,  

  6. Hauglustaine , D. and Kanakidou , M . 2000 . Comparison between global Chemistry-Transport Models results and measurements of ozone and water vapour by Airbus in-service aircraft (MOZAIC) data. J . Geophys. Res . 105 , D1 , 1503 – 1525 .  

  7. Lefevre , F. , Brasseur , G. P. , Follcins , I. , Smith , A. K. and Simon , P . 1994 . Chemistry of the 1991-1992 stratospheric winter : three-dimensional model simulations. J . Geophys. Res . 99 , D4 , 8183 – 8195 .  

  8. Lefevre , F. , Figarol , F. , Carslaw , K. S. and Peter , T . 1998 . The 1997 Arctic ozone depletion quantified from three-dimensional model simulations . Geophys. Res. Lett . 25 , 2425 – 2428 .  

  9. Lorene , A. C . 1988 . Optimal nonlinear objec-tive analysis . Q. J. R. MeteoroL Soc . 114 , 205 – 240 .  

  10. Marenco , A. , Thouret , V. , Nedelec , P. , Smit , H. , Helten , M. , Kley , D. , Karcher , E , Simon , R , Law , K. S. , Pyle , J. A. , Poschmann , G. , Von Wedre , R. , Hume , C. and Cook , T . 1998 . Measurements of ozone and water vapour by Air-bus in-service aircraft : the MOZAIC airbone program . J. Geophys. Res . 103 ( D19 ), 25631 – 25642 .  

  11. Peuch , V.-H. , Amodei , M. , Barthet , T. , Cathala , M.-L. , Josse , B. , Michou , M. and Simon , P . 1999 . MOCAGE: Modele de Chimie Atmospherique a Grande Echelle . In: Actes des Ateliers de Modélisation de t Atmosphère 1999. Meteo-France , Centre National de Recherches Meteorologiques , 33 – 36 .  

  12. Plantevin , P.-H . 2000 . The oxydizing capacity of the troposphere . PhD Thesis , University of Cambridge , PhD.23417 .  

  13. Riishojgaard , L. P . 1996 . On four-dimensional variational assimilation of ozone data in weather prediction models . Q. J. R. Meteorol. Soc . 122 , 1545 – 1571 .  

  14. Stoffelen , A. and Eskes , H. (eds.) 1999. SODA EU project final report available from KNMI, postbus 201,3730 AE de Bilt, the Netherlands; http://www.knmi.nl/soda.  

  15. WMO (World Meteorological Organization) 1998. Scientific assessment of ozone depletion, Global Ozone Research and Monitoring Project, report no. 44, WMO, Switzerland.  

comments powered by Disqus