Start Submission Become a Reviewer

Reading: Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model...

Download

A- A+
Alt. Display

Original Research Papers

Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO

Authors:

Anne Chevillard ,

Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA-CNRS 1572, F-91198 Gif-sur-Yvette; Institut de Radioprotection et de Sûretè Nuclèaire, DPRE/SERGD/LEIRPA, B.P. 17, F-92262 Fontenay-aux-Roses, FR
X close

Ute Karstens,

Max-Planck-Institut für Biogeochemie, D-07701 Jena, DE
X close

Philippe Ciais,

Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA-CNRS 1572, F-91198 Gif-sur-Yvette, FR
X close

Sébastien Lafont,

CESBIO, UMR CNRS-CNES-UPS, 18 av. E. Belin, Toulouse, FR
X close

Martin Heimann

Max-Planck-Institut für Biogeochemie, D-07701 Jena, DE
X close

Abstract

The spatial distribution and the temporal variability of atmospheric CO2 over Europe and western Siberia are investigated using the regional atmospheric model, REMO. The model, of typical horizontal resolution 50 km, is part of a nested modelling framework that has been established as a concerted action during the EUROSIBERIAN CARBONFLUX project. In REMO, the transport of CO2 is simulated together with climate variables, which offers the possibility of calculating at each time step the land atmosphere CO2 fluxes as driven by the modelled meteorology. The uptake of CO2 by photosynthesis is calculated using a light use efficiency formulation, where the absorbed photosynthetically active solar radiation is inferred from satellite measurements. The release of CO2 from plant and soil respiration is driven by the simulated climate and assumed to be in equilibrium with photosynthesis over the course of one year. Fossil CO2 emissions and air–sea fluxes within the model domain are prescribed, whereas the influence of sources outside the model domain is computed from as a boundary condition CO2 fields determined a global transport model. The modelling results are compared against pointwise eddy covariance fluxes, and against atmospheric CO2 records. We show that a necessary condition to simulate realistically the variability of atmospheric CO2 over continental Europe is to account for the diurnal cycle of biospheric exchange. Overall, for the study period of July 1998, REMO realistically simulates the short-term variability of fluxes and of atmospheric mixing ratios. However, the mean CO2 gradients from western Europe to western Siberia are not correctly reproduced. This latter deficiency points out the key role of boundary conditions in a limited-area model, as well as the need for using more realistic geographic mean patterns of biospheric carbon fluxes.

How to Cite: Chevillard, A., Karstens, U., Ciais, P., Lafont, S. and Heimann, M., 2002. Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO. Tellus B: Chemical and Physical Meteorology, 54(5), pp.872–894. DOI: http://doi.org/10.3402/tellusb.v54i5.16737
2
Views
  Published on 01 Jan 2002
 Accepted on 13 Jun 2002            Submitted on 9 Jul 2001

References

  1. Ahrens , B. , Karstens , U. , Rockel , B. and Stuhlmann , R . 1998 . On the validation of the atmospheric model REMO with ISCCP data and precipitation measurements using simple statistics. Meteorol. Atmos. Phys . 68 , 127 – 142 .  

  2. Arneth , A. , Kurbatova , J ., Kolle , O. , Shibistova , O. , Lloyd , J. , Vygodslcaya , N. N. and Schulze , E.-D. 2002 . Comparative ecosystem — atmosphere exchange of energy and mass in a European and a central Siberian bog. II. Interseasonal and interannual variability of CO2 fluxes. Tellus 54B (this issue).  

  3. Barcza , Z . 2001 . Long term atmosphere/biosphere ex-change of CO in Hungary . PhD Thesis, Budapest , http://nimbus.elte.hu/-bzoli/thesis/ .  

  4. Biraud , S. , Ciais , P. , Ramonet , M. , Simmonds , P. , Kazan , V. , Monfray , P. , O'Doherty , S. , Spain , T. G. and Jennings , S. G . 2000 . European greenhouse gas emissions estimated from continuous atmospheric measurements and radon-222 at Mace Head, Ireland. J. Geophys. Res . 105 , D1 , 1351 – 1366 .  

  5. Biraud , S. , Ciais , P. , Ramonet , M. , Simmonds , P. , Kazan , V. , Monfray , P. , O'Doherty , S. , Spain , T. G. and Jennings , S. G . 2002 . Quantification of carbon dioxide, methane, nitrous oxide and chloroform emissions over Ireland from atmospheric observations at Mace Head. Tellus 54 , 41 – 60 .  

  6. Bousquet , P. , Gaudry , A. , Ciais , P. , Kazan , V. , Monfray , P. , Simmonds , P. G. , Jennings , S. G. and O'Connor , T. C . 1996 . Atmospheric CO2 concentration variations recorded at Mace Head, Ireland, from 1992 to 1994. Phys. Chem. Earth 21 , 477 – 481 .  

  7. Chevillard , A. , Ciais , R , Karstens , U. , Heimann , M. , Schmidt , M. , Levin , I. , Jacob , D. and Podzun , R. 2002 . Transport of 222Rn using the regional model REMO: A detailed com-parison with measurements over Europe. Tellus 54B (this issue).  

  8. Chevillard , A . 2001 . Etude a haute resolution du CO2 atmo-spherique en Europe et en Siberie. Impact pour les bilans de carbone. PhD Thesis , Universite Pierre et Marie Curie, Paris , France .  

  9. Ciais , P. , Tans , P. P. , Denning , A. S. , Francey , R. J. , Trolier , M. , Meijer , H. A. J. , White , J. W. C. , Berry , J. A. , Randall , D. A. , Collatz , G. J. , Sellers , P. J. , Monfray , P. , and Heimann , M. 1997 . A three-dimensional synthesis study of delta 0-18 in atmospheric CO2. 2. Simulations with the TM2 transport model. J. Geophys. Res . 102 , D5 , 5873-5883 .  

  10. Conway , T. J. , Tans , P. R , Waterman , L. S. , Thoning , K. , Kitzis , D. R. , Masarie , K. A. and Zhang , N. 1994 . Evidence for interannual variability of the carbon cycle from the NOAA/CMDL global air sampling network. .1. Geophys. Res . 99 , D11, 22831 - 22855 .  

  11. Denning , A. S. , Randall , D. A. , Collatz , G. J. and Sellers , P. J . 1996 . Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 2: Simulated CO2 concentrations. Tellus 48B , 543 – 567 .  

  12. Engardt , M. and Holmen , K . 1999 . Model simulations of anthropogenic-0O2 transport to an Arctic monitoring sta-tion during winter. Tellus 51B , 194 – 209 .  

  13. Guerney , K. R. , Law , R. M. , Denning , S. A. , Rayner , P. J. , Baker , D. et al. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport mod-els. Nature 415 , 620 - 630 .  

  14. GLOBALVIEW- CO2. 2001 . Cooperative Atmospheric Data Integration Project - Carbon Dioxide. CD-ROM, NOAA CMDL, Boulder Colorado [also available on In-ternet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW].  

  15. Hamelbeck , F , Haimberger L. and Hantel , M . 2001 . Con-vection in PIDCAP part I: Evaluating LAM convection. Meteorol. Atmos. Phys . 77 , 85 – 98 .  

  16. Haszpra , L . 1999 . On the representativeness of carbon diox-ide measurements. J. Geophys. Res . 104 , D21, 26 953 - 26 960 .  

  17. Haszpra , L. , Barcza , Z. , Bakwin , P. S. , Berger , B. W. , Davis , K. J. and Weidinger , T . 2001 . Measuring system for the long-term monitoring of biosphere/atmosphere exchange of carbon dioxide. J. Geophys. Res . 106 , D3 , 3057 – 3069 .  

  18. Heimann , M . 1995 . The global tracer model TM2 ,. Tech-nical Report No.10, Deutsches Klima Rechenzentrum, Hamburg, 47 pp.  

  19. Hollmann , R. , Mueller , J. and Stuhlmann , R . 2000 . A regional earth radiation budget derived with ScaRaB for validation purposes in BALTEX. Phys. Chem. Earth B 25 , 69 - 72 . IPCC 2001 .  

  20. Jacob , D. and Podzun , R . 1997 . Sensitivity studies with the regional climate model REMO. Meteorol. Atmos. Phys . 63 , 119 – 129 .  

  21. Jacob , D. , Van den Hurk , B. J. J. M. , Andrae , U. , Elgered , G. , Fortelius , C. , Graham , L. P. , Jackson , S. D. , Karstens , U. , Köpken , C. , Lindau , R. , Podzun , R. , Rockel , B. , Rubel , F. , Sass , B. H. , Smith , R. N. B. , and Yang , X . 2001 . A com-prehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Mete-orol. Atmos. Phys . 77 , 19 – 43 .  

  22. Jfirrens , R . 1999 . Validation of surface fluxes in climate simu-lations of the Arctic with the regional model REMO. Tellus 51A , 698 – 709 .  

  23. Karstens , U. , Nolte-Holube , R. and Rockel , B . 1996 . Calcu-lation of the Water Budget over the Baltic Sea Catchment Area using the Regional Forecast Model REMO for June 1993. Tellus 48A , 684 – 692 .  

  24. Kjellstriim , E. , Holmen , K. , Eneroth , K. and Engardt , M . 2002 . Summertime Siberian CO2 simulations with the re-gional transport model MATCH: A feasibility study of car-bon uptake calculations from EUROSM data. Tellus , 54B (this issue).  

  25. Lafont , S. , Kergoat , L. , Dedieu , G. , Chevillard , A. , Kjell-striim , E. , Karstens , U. and Kolle , 0 . 2002. Spatial and temporal variability of land CO2 fluxes estimated with re-mote sensing and analysis data over western Eurasia. Tellus 54B (this issue).  

  26. Langmann , B . 2000 . Numerical modelling of regional scale transport and photochemistry directly together with mete-orological processes. Atmos. Environ . 34 , 3585 – 3598 .  

  27. Langmann , B. and Bauer , S . 2002 . On the importance of reliable background concentrations of ozone for regional scale photochemical modelling. J. Atmos. Chem ., in press .  

  28. Levin , I. , Graul , R. and Trivett , N. B. A. 1995 . Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B , 23 - 34 .  

  29. Lindau , R. and Ruprecht , E . 2000 . SSM/I-derived total water vapour content over the Baltic Sea compared to indepen-dent data. Meteorol. Z . 9 , 117 – 123 .  

  30. Lloyd , J. , Langenfelds , R. , Francey , R. J. , Gloor , M. , Zolothulcine , D. , Tchebakova , N. M. , Shibistova , O. , Allison , C. A. , Brand , W. A. , Werner , R. and Schulze, E.-D. 2002. A trace gas climatology above Zotino, central Siberia. Tellus 54B (this issue).  

  31. Lloyd , J. , Francey , R. J. , Mollicone , D. , Raupach , M. R. , Sogachev , A. , Arneth , A. , Byers , J. N. , Kelliher , F. M. , Rebmann , C. , Valentini , R. , Wong , S.-C. , Bauer , G. and Schulze , E.-D. 2001 . Vertical profiles, boundary layer bud-gets and regional flux estimates for CO2 and its 13 012c ratio for water vapor above a forest/bog mosaic in central Siberia. Global Biogeochem. Cycles 15 , 267 - 284 .  

  32. Louis , J.-E 1979 . A parametric model of vertical eddy fluxes in the atmosphere. Bound. Layer Meteor . 17 , 187 – 202 .  

  33. Majewslci , D . 1991 . The Europamodell of the Deutscher Wet-terdienst., ECMWF course “Numerical methods in atmo-spheric models” , 2 , 147 – 191 .  

  34. Marland , G. , Boden , T. A. and Andres , R. J. 2000. Global, Regional, and National CO2 Emissions. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory U.S. Department of Energy, Oak Ridge, Tenn., USA.  

  35. Mellor , B. and Yamada , T . 1974 . A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci . 31 , 1791 – 1806 .  

  36. Milyukova , I. , Kolle , O. , Varlagin , A. , Vygodskoya , N. N. , Schulze , E.-D. and Lloyd , J. 2002 . Carbon balance of a southern taiga spruce stand in European Russia. Tellus 54B (this issue).  

  37. Nakazawa , T. , Sugawara , S. , Inoue , G. , Machida , T ., Mak-shyutov, and Mukai , H. 1997 . Aircraft measurements of the concentrations of CO2, CH., N20 and CO and the carbon and oxygen isotopic ratios of CO2 in the troposphere over Russia. J. Geophys. Res . 102 , ( D3 ), 3843-3859 .  

  38. Olivier , J. G. J. , Bouwman , A. F. , Van der Maas , C. W. M. , Berdowslci , J. J. M. , Veldt , C. , Bloos , J. P. J. , Visschedijk , A. J. H. , Zandyelt , P. Y. J. and Haverlag, J. L. 1996. De-scription of EDGAR Version 2.0. A set of global emission inventories of greenhouse gases and ozone-depleting sub-stances for all anthropogenic and most natural sources on a per country basis and on 1 x 1 grid. RIVM/TNO re-port, December 1996. RIVM, Bilthoven, RIVM report nr. 771060 002. [TNO MEP report nr. R96/119].  

  39. Ramonet , M. , Ciais , R , Nepomniachii , I. , Sidorov , K. , Neu-bert , R. E. M. , Picard , D. , Kazan , V , Biraud , S. , Gusti , M. , Kolle , O. , Schulze , E.-D. and Lloyd , J. 2002 . Three years of aircraft based trace gas measurements over the Fyodoroskoye southern taiga forest, 300 km North-West of Moscow. Tellus 54B (this issue).  

  40. Rockel , B. and Karstens , U . 2001 . Development of the wa-ter budget for three extra-tropical cyclones with intense rainfall over Europe. Meteorol. Atmos. Phys . 77 , 75 – 83 .  

  41. Roeckner , E. , Arpe , K. , Bengtsson , L. , Christoph , M. , Claussen , M. , Duemenil , L. , Esch , M. , Giorgetta , M. , Schlese , U. and Schulzweida , U . 1996 . The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate . MPI, Hamburg , Germany .  

  42. Ruimy , A. , Dedieu , G. and Saugier , B . 1996 . TURC: a diag-nostic model of continental gross primary productivity as net primary productivity, Global Biogeochem. Cycles 10 , 269 – 285 .  

  43. Schmidt , M. , Graul , R. , Sartorius , H. and Levin , I . 1996 . Carbon dioxide and methane in continental Europe: A cli-matology, and 222radon-based emission estimates. Tellus 48B , 457 – 473 .  

  44. Schmidt , M ., Glatzel-Mattheier , H. , Sartorius , H. , Worthy , D. E. and Levin , I. 2001 . Western European N20 emissions: A top-down approach based on atmospheric observations. J. Geophys. Res . 106 , D6 , 5507-5516 .  

  45. Schrodin , R . 1993 (ed.): Quaterly report of the Operational NWP-Models of the Deutscher Wetterdienst . Available from the Deutscher Wetterdienst, Offenbach, Gernany.  

  46. Schultze , E.-D. , Lloyd , J. , Kelliher , F. M. , Wirth , C. , Rebmann , C. , Liihker , B. , Mund , M. , Knohl , A. , Mi-lykova , I. , Schulze , W. , Ziegler , W. , Varlagin , A. , Valen-tini , R. , Sogachov , A. , Valentini , R. , Dore , S. , Grig-oriev , S. , Kolle , O. , Tchebakova , N. , Vgodslcaya , N. N. 1999 . Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - A synthesis. Global Change Biology 5 , 703 - 722 .  

  47. Smolarkiewicz , P. K . 1983 . A simple positive definite advec-tion scheme with small implicit diffusion. Mon. Wea. Rev . 111 , 479 – 486 .  

  48. Styles , J. M. , Lloyd , J. , Zolothukine , D. , Lawton , K. A. , Tchebakova , N. , Francey , R. J. , Arneth , A. , Salamalcho , D. , Kolle , O. and Schulze, E.-D. 2002. Estimates of re-gional surface CO2 exchange and carbon and oxygen iso-tope discrimination during photosynthesis from concen-tration profiles in the atmospheric boundary layer. Tellus , 54B (this issue).  

  49. Stull , R. B . 1988 . An introduction to boundary layer me-teorology . Kluwer Academic Publishers, Dordrecht , The Netherlands .  

  50. Takahashi , T. , Sutherland , S. C. , Sweeney , C. , Poisson , A. , Metzel , N. , Tilbrook , B. , Bates , N. , Wanninkof , R. , Feely , R. A. , Sabine , C. , Olafsson , J. and Nojiri , Y. 2002 . Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-sea Res . 1008 (in press).  

  51. Tiedtke , M . 1989 . A comprehensive mass flux scheme for cumulus parameterization in large scale models. Mon.Wea. Rev . 117 , 1779 – 1800 .  

  52. van Meijgaard , E. , Andrae , U. and Rockel , B . 2001 . Com-parison of model predicted cloud parameters and surface radiative fluxes with observations on the 100 km scale. Meteorol. Atmos. Phys . 77 , 109 – 130 .  

  53. Wanninkhof , R . 1992 . Relationship between wind speed and gas exchange. J. Geophys. Res . 97 , 7373 – 7382 .  

  54. Zhang , Y. , Rockel , B. , Stuhlmann , R. , Hollmann , R. and Karstens , U . 2001 . REMO cloud modeling: Improvements and validation with ISCCP DX data. J. Appl. Meteorol . 40 , 389 – 408 .  

comments powered by Disqus