Start Submission Become a Reviewer

Reading: Seasonal variability of greenhouse gases in the lower troposphere above the eastern European...

Download

A- A+
Alt. Display

Original Research Papers

Seasonal variability of greenhouse gases in the lower troposphere above the eastern European taiga (Syktyvkar, Russia)

Authors:

K. Sidorov ,

Svertsov Institute for Evolutionary and Ecological Problems (IPEE), Leninskii pr. 33, 117071 Moscow, RU
X close

A. Sogachev,

Svertsov Institute for Evolutionary and Ecological Problems (IPEE), Leninskii pr. 33, 117071 Moscow, RU
X close

U. Langendørfer,

Institut für Umweltphysik, University of Heidelberg (UHEI-IUP), Im Neuenheimer Feld 229, 69120 Heidelberg, DE
X close

J. Lloyd,

Max-Planck-Institut für Biogeochemie (MPI-BGC), Postfach 100164, 20146 Hamburg, DE
X close

I. L. Nepomniachii,

Svertsov Institute for Evolutionary and Ecological Problems (IPEE), Leninskii pr. 33, 117071 Moscow, RU
X close

N. N. Vygodskaya,

Svertsov Institute for Evolutionary and Ecological Problems (IPEE), Leninskii pr. 33, 117071 Moscow, RU
X close

M. Schmidt,

Institut für Umweltphysik, University of Heidelberg (UHEI-IUP), Im Neuenheimer Feld 229, 69120 Heidelberg, DE
X close

I. Levin

Institut für Umweltphysik, University of Heidelberg (UHEI-IUP), Im Neuenheimer Feld 229, 69120 Heidelberg, DE
X close

Abstract

A three year long record of regular vertical aircraft profiling for continuous atmospheric CO2 mixing ratio measurements as well as for flask sampling to derive the climatology of other greenhouse gases (CH4, SF6 and N2O), is presented. Measurements were undertaken in the lower troposphere between 100 and 3000 m over the eastern European taiga about 100 km south east of the city of Syktyvkar(61°24′N, 52°18′E). From the continuous profiles mean CO2 mixing ratios were calculated for the atmospheric boundary layer (ABL) and for the “free troposphere” up to 3000 m. The amplitudes of the respective seasonal cycles are 22.1 ± 3.5 and 14.0 ± 2.1 ppm. ABL mixing ratios are generally larger than free tropospheric values during the winter period, and smaller during the summer due to the change of the continental biosphere from a source to a sink. The phasing of the seasonal cycles is slightly different between the two height intervals (by about 30 days), with the ABL extremes occurring earlier. Very abrupt concentration changes up to 8 ppm are observed in the free troposphere associated with changes in air mass origin. Mean CO2 mixing ratios derived from flask samples at 3000 m compare well with the respective integrated values measured in the continuous profiles above the ABL (ΔCO2 = 0.3 ± 1.6 ppm). CH4 mixing ratios also show a pronounced seasonality, and winter time vertical gradients correlate well with those of CO2. Similarly, SF6 vertical gradients are correlated with CO2 gradients possibly pointing to some anthropogenic origin of the boundary layer CO2 signal during winter. N2O and SF6 also show a slight seasonality with almost the same phasing. The main reasons for the seasonality of both gases are probably transport processes with a possible contribution from stratosphere/troposphere exchange.

How to Cite: Sidorov, K., Sogachev, A., Langendørfer, U., Lloyd, J., Nepomniachii, I.L., Vygodskaya, N.N., Schmidt, M. and Levin, I., 2002. Seasonal variability of greenhouse gases in the lower troposphere above the eastern European taiga (Syktyvkar, Russia). Tellus B: Chemical and Physical Meteorology, 54(5), pp.735–748. DOI: http://doi.org/10.3402/tellusb.v54i5.16723
  Published on 01 Jan 2002
 Accepted on 17 Jun 2002            Submitted on 10 Oct 2001

References

  1. Appenzeller , C. , Holton , J. R. and Rosenlof , K. H . 1996 . Seasonal variation of mass transport across the tropopause. J. Geophys. Res . 101 , D10 , 15071 – 15078 .  

  2. Brutsaert , W . 1985 . Evaporation into the atmosphere. Theory, history and applications. Gidrometeoizdat , Leningrad , 351 pp .  

  3. Byzova , N. L. and Ivanov , V. N . 1989 . Turbulence in bound-ary level. Gidrometeoizdat , Leningrad , 230 pp .  

  4. Chevillard , A. , Ciais , R , Karstens , U. , Heimann , M. , Schmidt , M. , Levin , I. , Jacob , D. and Podzun, R. 2002a. Transport of 222Rn using the regional scale model REMO: A detailed comparison with measurements over Europe. Tellus 54B , this issue.  

  5. Chevillard , A. , Karstens , U. , Ciais , P. , Lafont , S. and Heimann , M . 2002b . Simulation of atmospheric CO2 over Europe and Western Siberia using the regional scale model REMO. Tellus 54B , this issue.  

  6. Ehhalt , D. , Prather , M. , Dentener , F. , Derwent , R. , Dlugokencky , E. , Holland , E. , Isaksen , I. , Katima , J. , Kirchhoff , V. , Matson , P. , Midgley , P. and Wang , M. 2001 . Atmospheric chemistry and greenhouse gases. In: Climate Change 2001: The scientific basis , (eds. J. T. Houghton, et al), Cambridge University Press, Cambridge, UK.  

  7. Flessa , H. , Dörsch , P. and Beese , F. 1995 . Seasonal varia-tion of N20 and CH4 fluxes in differently managed arable soils in southern Germany. J. Geophys. Res. 100 , 23115 - 23124 .  

  8. Geller , L. S. , Elkins , J. W. , Lobert , J. M. , Clarke , A. D. , Hurst , D. F. , Butler , J. H. and Myers , R. C . 1997 . Tropospheric SF6: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time. Geophys. Res. Lett . 24 , 675 – 678 .  

  9. Harnisch , J. , Bischof , W. , Borchers , R. , Fabian , P. , and Maiss , M . 1998 . A stratospheric excess of CO2 - due to tropical deep convection? Geophys. Res. Lett . 25 , 63 – 66 .  

  10. Keeling , C. D. , Piper , S. C. and Heimann , M . 1989 . A three-dimensional model of atmospheric CO2 transport based on obsrved winds: 4. Mean annual gradients and interannual variations. Geophys. Monogr . 55 , 305 – 363 .  

  11. Kogubov , G. M. and Toskaev , A. I . 1999 . Forest of Komi respublik. Dik Publishing House , Moscow , 460 pp .  

  12. Levin , I. , Glatzel-Mattheier , H. , Marik , T. , Cuntz , M. , Schmidt , M. and Worthy, D. E. 1999. Verification of German methane emission inventories and their recent changes based on atmospheric observations. J. Geophys. Res . 104 , 3447 - 3456 .  

  13. Levin , I. , Ciais , P. , Langenfelds , R. , Schmidt , M. , Ramonet , M. , Sidorov , K. , Tchebakova , N. , Gloor , M., N. , Heimann , M. , Schulze , E. D. , Vygodskaya , N. N. , Shibistova , O. and Lloyd , J. 2002 . Three years of trace gas observations over the EuroSiberian domain derived from aircraft sampling - a concerted action. Tellus 54B , this issue.  

  14. Lloyd , J. , Langenfelds , R. , Francey , R. J. , Gloor , M. , Tchebalcova , N. M. , Zolotukine , D. , Brand , W. A. , Werner , R. , Jordan , A. , Allison , C. A. , Zrazhewske , V. , Shibistova , 0 . and Schulze, E.-D. 2002. A trace gas climatology above Zotino, central Siberia. Tellus 54B , this issue.  

  15. Matveev , L. T . 1984 . Rate of general meteorology and physics of the atmosphere. Moscow State University Publishing House , Moscow , 518 pp .  

  16. Maiss , M. and Brenninlcmeijer , C. A. M . 1998 . Atmospheric SF6: Trends, sources and prospects. Environ. Sci. Technol . 32 , 3077 – 3086 .  

  17. Maiss , M. , Ilmberger , J. , Zenger , A. and Miinnich , K. O. 1994 . A SF6 tracer study of horizontal mixing in Lake Constance. Aquatic Sci . 56 , 307 - 328 .  

  18. Maiss , M. , Steele , L. P. , Francey , R. J. , Fraser , P. J. , Langenfelds , R. L. , Trivett , N. B. A. and Levin , I . 1996 . Sulfur hexafluoride - a powerful new atmospheric tracer. Atmos. Environ . 30 , 1621 – 1629 .  

  19. Michlcova , N. A . 1983 . Climate of the USSR. Moscow State University Publishing House , Moscow , 365 pp .  

  20. Nakazawa , T. , Sugawara , S. , Inoue , G. , Machida , T. , Malcshyutov , S. and Mulcai , H . 1997a . Aircraft measure-ments of the concentration of CO2, CH4, N20, and CO and the carbon and oxygen isotopic ratios of CO2 in the tropo-sphere over Russia. J. Geophys. Res . 102 , 3843 – 3859 .  

  21. Nakazawa , T. , Ishizawa , M. , Higuchi , K. and Trivett , N. B. A . 1997b . Two curve fitting methods applied to CO2 flask data. EnvironMetrics 8 , 197 – 218 .  

  22. Panikov , N. S. and Dedysh , S. N . 2000 . Cold season CH4 and CO2 emissions from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Global Bio-geochem. Cycles 14 , 1071 – 1080 .  

  23. Prinn , R. and 16 others . 2000 . A history of chemically and ra-diatively important gases in air deduced from ALE/GAGE/ AGAGE. J. Geophys. Res . 105 , 17751 - 17792 .  

  24. Ramonet , M. , Ciais , R , Nepomnjashiy , I. L. , Sidorov , K. , Neubert , R. , Picard , D. , Kazan , V. , Birand , S. , Gusti , M. , Kolle , O. , Schulze , E. D. and Lloyd , J. 2002 . Three years of aircraft based trace gas measurements over Fyodorovskoye southern taiga forest, 300 km north-west of Moscow. Tellus 54B , this issue.  

  25. Schmidt , M. , Graul , R. , Sartorius , H. and Levin , I. 1996 . Carbon dioxide and methane in continental Europe: a cli-matology, and 222radon-based emission estimates. Tellus 48B , 457 - 473 .  

  26. Schmidt , M ., Glatzel-Mattheier , H. , Sartorius , H. , Worthy , D. E. and Levin , I. 2001 . Western European N20 emissions — a top down approach based on atmospheric observations. J. Geophys. Res . 106 , 5507 - 5516 .  

  27. Shibistova , O. , Lloyd , J. , Evgrafova , S. , Savushlcina , N. , Zrazhewslcaya , G. , Arneth , A. , Knohl , A. , Kolle , O. and Schulze, E.-D. 2002.  

  28. Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus 54B , this issue.  

  29. Strunk , M. , Engel , A. , Schmidt , U. , Volk , C. M. , Wetter , T. , Levin , I. , and Glatzel-Mattheier, H. 2000. CO2 and SF6 as stratospheric age tracers: consistency and the effect of mesospheric 5F6-loss. Geophys. Res. Lett . 27 , 341 - 344 .  

  30. Tans , P. P. , Fung , I. Y. and Takahashi , T. 1990 . Observational constraints on the global atmospheric CO2 budget. Science 247 , 1431 - 1438 .  

  31. Tans , P. P. , Bakwin , P. S. and Guenther, D. W. 1996. A fea-sible Global Carbon Cycle Observing System: A plan to decipher today's carbon cycle based on observations. Global Change Biol . 2 ,309-318.  

  32. Weiss , R. F. , Keeling , C. D. and Craig , H . 1981 . The deter-mination of tropospheric nitrous oxide, J. Geophys. Res . 86 , 7197 – 7202 .  

  33. Worthy , D. E. J. , Trivett , N. B. A. , Hopper , J. F. , Bottenheim , J. W. and Levin , I. 1994 . Analysis of long range transport events at Alert, N.W.T., during the Polar Sunrise Experi-ment. J. Geophys. Res . 99 , 25329 - 25344 .  

  34. Zimov , S. A. , Semiletov , I. P. , Davidov , S. P. , Voropaev , Y. V. , Prosyannikov , C. F. , Wong , S. C. and Chan, Y. H. 1993. Wintertime CO2 emission from soil of northeastern Siberia. Arctic 46 , 197 - 204 .  

comments powered by Disqus