Start Submission Become a Reviewer

Reading: Net CO2 exchange rates in three different successional stages of the “Dark Taiga&#x20...

Download

A- A+
Alt. Display

Original Research Papers

Net CO2 exchange rates in three different successional stages of the “Dark Taiga” of central Siberia

Authors:

Carola Röser ,

Max Planck Institute for Biogeochemistry, PO Box 100164, 07001 Jena; Rilkestrasse 84, 53225 Bonn, DE
X close

Leonardo Montagnani,

University of Tuscia, Viterbo, IT
X close

E.-Detlef Schulze,

Max Planck Institute for Biogeochemistry, PO Box 100164, 07001 Jena, DE
X close

Danilo Mollicone,

Joint Research Centre, Ispra, IT
X close

Olaf Kolle,

Max Planck Institute for Biogeochemistry, PO Box 100164, 07001 Jena, DE
X close

Michele Meroni,

University of Tuscia, Viterbo, IT
X close

Dario Papale,

University of Tuscia, Viterbo, IT
X close

Luca Belelli Marchesini,

University of Tuscia, Viterbo, IT
X close

Sandro Federici,

University of Tuscia, Viterbo, IT
X close

Riccardo Valentini

University of Tuscia, Viterbo, IT
X close

Abstract

The net ecosystem exchange (NEE) of successional stages of the Abies-dominated dark taiga was measured in central Siberia (61°N 90°E) during the growing season of the year 2000 using the eddy covariance technique. Measurements started before snow melt and canopy activity in spring on day of year (DOY) 99 and lasted until a permanent snow cover had developed and respiration had ceased in autumn DOY 299. Three stands growing in close vicinity were investigated: 50 yr-old Betula pubescens (“Betula stand”, an early successional stage after fire), 250 yr-old mixed boreal forest, representing the transition from Betula-dominated to Abies-dominated canopies, and 200-yr-old Abies sibirica (“Abies stand”, representing a late successional stage following the mixed boreal forest). The mixed boreal forest had a multi-layered canopy with dense understory and trees of variable height and age below the main canopy, which was dominated by Abies sibirica, Picea obovata and few old Betula pubescens and Populus tremula trees. The Abies stand had a uniform canopy dominated by Abies sibirica. This stand appears to have established not after fire but after wind break or insect damage in a later successional stage. The stands differed with respect to the number of days with net CO2 uptake (Betula stand 89 days, mixed boreal forest 109 days, and Abies stand 135 days), maximum measured LAI (Betula 2.6 m2 m−2, mixed boreal forest 3.5 m2 m−2 and Abies stand 4.1 m2 m−2) and basal area (Betula stand 30.2 m2 ha−1, mixed boreal forest 35.7 m2 ha−1, and Abies stand 46.5 m2 ha−1). In the mixed boreal forest, many days with net daytime CO2 release were observed in summer. Both other sites were almost permanent sinks in summer. Mean daytime CO2 exchange rates in July were −8.45 μmol m−2 s−1 in the Betula stand, −4.65 μmol m−2 s−1 in the mixed boreal forest and −6.31 μmol m−2 s−1 in the Abies stand. Measured uptake for the growing season was −247.2 g C m−2 in the Betula stand, −99.7 g C m−2 in the mixed boreal forest and −269.9 g C m−2 in the Abies stand. The total annual carbon uptake might be slightly lower (i.e. less negative) due to some soil respiration under snow in winter. The study for the first time demonstrates that old forests in the “Dark Taiga” are carbon sinks and that sink activity is very similar in late and early successional stages. Canopy and crown structure with associated self-shading and available radiation are suggested as possible causes for the observed differences.

How to Cite: Röser, C., Montagnani, L., Schulze, E.-D., Mollicone, D., Kolle, O., Meroni, M., Papale, D., Marchesini, L.B., Federici, S. and Valentini, R., 2002. Net CO2 exchange rates in three different successional stages of the “Dark Taiga” of central Siberia. Tellus B: Chemical and Physical Meteorology, 54(5), pp.642–654. DOI: http://doi.org/10.3402/tellusb.v54i5.16704
  Published on 01 Jan 2002
 Accepted on 30 May 2002            Submitted on 2 Aug 2001

References

  1. Aubinet , M. , Grelle , A. , Ibrom , A. , Rannilc , C. , and Montcrieff , J. and coauthors 2000 . Estimates of the annual net carbon and water exchange of forests: The EU-ROFLUX methodology. Advances in Ecological Research 30 , Academic Press , 115 – 175 .  

  2. Baldocchi , D. D. , Law , B. E. and Anthoni , P. M . 2000 . On measuring and modeling energy fluxes above the floor of a homogeneous and heterogeneous conifer forest. Agric. For. Meteorol . 102 , 187 – 206 .  

  3. Baldocchi , D. D. , Vogel , C. A. and Hall , B . 1997 . Seasonal variation of carbon dioxide exchange rates above and be-low a boreal Jack pine forest. Agric. For. Meteorol . 83 , 147 – 170 .  

  4. Barford , C. C. , Wofsy , S. C. , Goulden , M. L. , Munger , J. W. , Hammond Pyle , E. and coauthors 2001 . Factors controlling long- and short-term sequestration of atmo-spheric CO2 in a mid-latitude forest. Science 294 , 1688 – 1691 .  

  5. Boone , R. D. , Nadelhoffer , K. J. , Canary , J. D. and Kaye , J. P . 1998 . Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396 , 570 – 572 .  

  6. Eugster , W. and Senn , W . 1995 . A cospectral correction model for measurement of turbulent NO2 flux. Boundary-Layer Meteorol . 74 , 321 – 340 .  

  7. Gower , S. T ., Krankina , O. , Olson , R. , Apps , M. , Linder , S. and coauthors 2001. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol. Appl . 11 , 1395 - 1411 .  

  8. Hollinger , D. Y. , Kelliher , E M. , Schulze , E.-D. , Bauer , G. , Arneth , A. and coauthors 1998 . Forest-Atmosphere Car-bon Dioxide Exchange in Eastern Siberia. Agric. For. Me-teorol . 90 , 291 – 306 .  

  9. Janssens , A. , Lankreijer , H. , Matteucci , G. , Kowalski , A. S. , Buchmann , N. and coauthors 2001. Productivity overshad-ows temperature in determining soil and ecosystem respi-ration across European forests. Global Change Biol . 7 , 269 - 278 .  

  10. Jarvis , P. G. , Dolman , A. J. , Schulze , E.-D. , Matteucci , G. , Kowalski , A. S. and coauthors 2001. Carbon balance gra-dient in European forests: should we doubt ‘surprising’ results? A reply to Piovesan & Adams. J. Veg. Sci . 12 , 145 - 150 .  

  11. Jarvis , P. G. , Massheder , J. M. M. , Hale , S. E. , Moncrieff , J. B. , Rayment , M. B. and coauthors 1997. Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. J. Geophys. Res . 102 , 28953 - 28966 .  

  12. Kelliher , E M. , Lloyd , J. , Arneth , A. , Byers , J. N. , McSev-eny, T. M. and coauthors 1998. Evaporation from a central Siberian pine forest. J. Hydrol . 205 , 279 - 296 .  

  13. Knohl , A . 1999 . Kohlendioxid-, Wasserdampf- und Wärmeaustausch eines durch Windwurf gestörten Waldökosystems in der west-russischen Taiga. Diplo-marbeit Thesis, Universität Bayreuth, Bayreuth, 107 pp.  

  14. Lavigne , M. B. , and Ryan , M. G. and coauthors 1997 . Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites. Tree Physiol . 17 , 543 – 551 .  

  15. Lavigne , M. B. , Ryan , M. G. , Anderson , D. E. , Baldocchi , D. D. , Crill, P.M. and coauthors 1997. Comparing noctur-nal eddy covariance measurements to estimates of ecosys-tem respiration made by scaling chamber measurements at six coniferous boreal sites. J. Geophys. Res . 102 , 28977 - 28985 .  

  16. Law , B. E. , Cescatti , A. and Baldocchi , D. D . 2001 . Leaf area distribution and radiative transfer in open-canopy forests: implications for mass and energy exchange. Tree Physiol . 21 , 777 – 787 .  

  17. Lindroth , A. , Grelle , A. and Moren , A.-S . 1998 . Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol . 4 , 443 – 450 .  

  18. Lloyd , J. and Taylor , J. A . 1994 . On the temperature depen-dence of soil respiration. Funct. Ecol. 8 , 315 - 323 .  

  19. McMillen , R. T . 1988 . An eddy correlation technique with extended applicability to non-simple terrain . Boundary-Layer Meteorol . 43 , 231 – 245 .  

  20. Mollicone et al. , 2002 . Tellus 54B (this issue).  

  21. Nobel , P. S . 1991 . Physiochemical and environmental plant physiology. Academic Press , New York .  

  22. Schulze , E.-D . 1982 . Plant life forms as related to plant car-bon, water, and nutrient relations. Encycl. Plant Physiol . 12 , 615 – 676 .  

  23. Shibistova et al. 2002 . Tellus 54B (this issue).  

  24. Styles , J. M. , Raupach , M. R. , Farquhar , G. D. , Kolle , O. , Lawton , K. A. and coauthors 2002. Soil and canopy CO2, 1-3CO2, H20 and sensible heat flux partitioning in a forest canopy inferred from concentration measurements. Tellus 54B (this issue).  

  25. Valentini , R. , Matteucci , G. , Dolman , A. J. , Schulze , E.-D. , Rebmann , C. and coauthors 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404 , 861 - 865 .  

  26. van Kleve , K. and Vierek , L. A . 1981 . Forest succession in relation to nutrient cycling in the boreal forest of Alaska. In: Forest succession (eds. D.C. West , H.H. Shugart and D.B. Botkin), Springer-Verlag , Berlin .  

comments powered by Disqus