Start Submission Become a Reviewer

Reading: Comparative ecosystem–atmosphere exchange of energy and mass in a European Russian an...

Download

A- A+
Alt. Display

Original Research Papers

Comparative ecosystem–atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes

Authors:

Almut Arneth ,

Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena; Max Planck Institute for Meteorology, Bundesstrasse 55, 20146 Hamburg, DE
X close

Juliya Kurbatova,

Severtsov Institute for Ecology and Evolution, Lenisnki Prospect, Moscow, RU
X close

Olaf Kolle,

Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, DE
X close

Olga B. Shibistova,

V. N. Sukachev Forest Institute, Akademgorodok, 660036 Krasnoyarsk, RU
X close

Jon Lloyd,

Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, DE
X close

Natasha N. Vygodskaya,

Severtsov Institute for Ecology and Evolution, Lenisnki Prospect, Moscow, RU
X close

E.-D. Schulze

Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, DE
X close

Abstract

Net ecosystem–atmosphere exchange of CO2 (NEE) was measured in two boreal bogs during the snow-free periods of 1998, 1999 and 2000. The two sites were located in European Russia (Fyodorovskoye), and in central Siberia (Zotino). Climate at both sites was generally continental but with more extreme summer–winter gradients in temperature at the more eastern site Zotino. The snow-free period in Fyodorovskoye exceeded the snow-free period at Zotino by several weeks. Marked seasonal and interannual differences in NEE were observed at both locations, with contrasting rates and patterns. Amongst the most important contrasts were: (1) Ecosystem respiration at a reference soil temperature was higher at Fyodorovskoye than at Zotino. (2) The diurnal amplitude of summer NEE was larger at Fyodorovskoye than at Zotino. (3) There was a modest tendency for maximum 24 h NEE during average rainfall years to be more negative at Zotino (−0.17 versus −0.15 mol m−2 d−1), suggesting a higher productivity during the summer months. (4) Cumulative net uptake of CO2 during the snow-free period was strongly related to climatic differences between years. In Zotino the interannual variability in climate, and also in the CO2 balance during the snow-free period, was small. However, at Fyodorovskoye the bog was a significant carbon sink in one season and a substantial source for CO2-C in the next, which was below-average dry. Total snow-free uptake and annual estimates of net CO2-C uptake are discussed, including associated uncertainties.

How to Cite: Arneth, A., Kurbatova, J., Kolle, O., Shibistova, O.B., Lloyd, J., Vygodskaya, N.N. and Schulze, E.-D., 2002. Comparative ecosystem–atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes. Tellus B: Chemical and Physical Meteorology, 54(5), pp.514–530. DOI: http://doi.org/10.3402/tellusb.v54i5.16684
  Published on 01 Jan 2002
 Accepted on 28 May 2002            Submitted on 2 Jul 2001

References

  1. Alm , J. , Schulman , L. , Walden , J. , Nykanen , H. , Martilcainen , P. J. and Silvola , J . 1999 . Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80 , 161 – 174 .  

  2. Armentano , T. V. and Menges , E. S . 1986 . Patterns of change in the carbon balance of organic soil-wetlands of the tem-perate zone. J. Ecol . 74 , 755 – 774 .  

  3. Arneth , A. , Kelliher , F. M. , Gower , S. T. , Scott , N. A. , Byers , J. N. and McSeveny , T. M . 1998a . Environmental variables regulating soil carbon dioxide efflux following clear-cutting of a Pinus radiata D. Don plantation. J. Geo-phys. Res.-Atmos . 103 , D5 , 5695 – 5705 .  

  4. Arneth , A. , Kelliher , F. M. , McSeveny , T. M. and Byers , J. N . 1998b . Fluxes of carbon and water in a Pinus radiata forest subject to soil water deficit. Aust. J. Plant Physiol . 25 , 557 – 570 .  

  5. Arneth , A. , Lloyd , J. , Santrucova , H. , Bird , M. , Grigoriev , S. , Brand , W. , Werner , R. , Gleixner , G. and Schulze , E.-D . 2002 . Response of central Siberian Scots pine in to soil water deficit and long-term trends in atmospheric CO2 concentration. Global Biogeochem. Cycles 16, 5/1-5/13.  

  6. Aubinet , M. , Grelle , A. , Ibrom , A. , Rannilc , U. , Moncrieff , J. , Foken , T. , Kowalski , A. S. , Martin , P. H. , Berbigier , R , Bernhofer , C. , Clement , R. , Elbers , J. , Granier , A. , Grunwald , T. , Morgenstern , K. , Pilegaard , K. , Rebmann , C. , Snijders , W. , Valentini , R. and Vesala , T . 2000 . Es-timates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res . 30 , 113 – 175 .  

  7. Aurela , M. , Tuovinen , J. P. and Laurila , T . 1998 . Carbon diox-ide exchange in a subarctic peatland ecosystem in north-ern europe measured by the eddy covariance technique. J. Geophys. Res . 103 , D10 , 11289 – 11301 .  

  8. Bellisario , L. M. , Moore , T. R. and Bubier , J. L . 1998 . Net ecosystem CO2 exchange in a boreal peatland, northern Manitoba. Ecoscience 5 , 534 – 541 .  

  9. Botch , M. S. and Masing , V. V . 1983 . Mire ecosystems in the USSR. In: Mires: swamp, bog, fen and moor. Regional studies (ed. A. J. P. Gore). Ecosystems of the World 4B . Elsevier, Amsterdam, 95 - 152 .  

  10. Brake , M. , Hoper , H. and Joergensen , R. G . 1999 . Land use-induced changes in activity and biomass of microor-ganisms in raised bog peats at different depths. Soil Biol. Biochem . 31 , 1489 – 1497 .  

  11. Brooks , A. and Farquhar , G. D . 1985 . Effect of temperature on the CO2/02 specificity of ribulose-1,5-bisphosphate car-boxylase/oxygenase and the rate of respiration in the light. Planta 165 , 397 – 406 .  

  12. Christensen , T. R. , Friborg , T. , Sommerkorn , M. , Kaplan , J. and Illeris , L . 2000 . Trace gas exchange in a high-arctic valley 1. Variations in CO2 and CH4 fluxes between tundra vagetation types. Global Biogeochem. Cycles 14 , 701 – 713 .  

  13. Christensen , T. R. , Jonasson , S. , Callaghan , T. V. and Havstrom , M . 1999 . On the potential CO2 release from tundra soils in a changing climate. Appl. Soil Ecol . 11 , 127 – 134 .  

  14. Clein , J. S. and Schimel , J. P . 1995 . Microbial activity of tundra and taiga soils at sub-zero temperatures. Soil Biol. Biochem . 27 , 1231 – 1234 .  

  15. Falge , E. , Baldocchi , D. , Olson , R. , Anthoni , P. , Aubinet , M. , Bernhofer , C. , Burba , G. , Ceulemans , R. , Clement , R. , Dolman , H. , Granier , A. , Gross , R , Grunwald , T. , Hollinger , D. , Jensen , N.-0. , Katul , G. , Keronen , P. , Kowalski , A. , Lai , C. T. , Law , B. E. , Meyers , T. , Moncrieff , J. , Moors , E. , Munger , J. W. , Pilegaard , K. , Rannilc , U. , Rebmann , C. , Suyker , A. , Tenhunen , J. , Tu , K. , Verma , S. , Vesala , T. K. W. and Wofsy , S. 2000 . Gap filling strategies for long term energy flux data sets. Agric. For. Meteorol . 107 , 71 - 77 .  

  16. Fan , S.-M. , Goulden , M. L. , Munger , J. W. , Daube , B. C. , Bakwin , P. S. , Wofsy , S. C. , Amthor , J. S. , Fitzjarrald , D. R. , Moore , K. E. and Moore, T. R. 1995. Environmental controls on the photosynthetis and respiration of a boreal lichen woodland: a growing season of whole-ecosystem exchange measurements by eddy correlation. Oecologia 102 ,443-452.  

  17. Frolking , S. E. , Bubier , J. L. , Moore , T. R. , Ball , T. , Bellisario , L. M. , Bhardwaj , A. , Carroll , P. , Crill , P. M. , Lafleur , P. M. , McCaughey , J. H. , Roulet , N. T. , Suyker , A. E. , Verma , S. B. , Waddington , J. M. and Whiting, G. J. 1998. Relationship between ecosystem productivity and photosynthetically active radiation for northern peat-lands. Global Biogeochem. Cycles 12 , 115 - 126 .  

  18. Funk , D. W. , Pullman , E. R. , Peterson , K. M. , Crill , P. M. and Billings , W. D . 1994 . Influence of water table on car-bon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms. Global B iogeochem. Cycles 8 , 217 – 278 .  

  19. Gorham , E . 1991 . Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecol. Appl . 1 , 182 – 195 .  

  20. Goulden , M. L. , Munger , J. W. , Fan , S. M. , Daube , B. C. and Wofsy , S. C . 1996a . Measurements of carbon seques-tration by long-term eddy covariance—methods and a crit-ical evaluation of accuracy. Global Change Biol . 2 , 169 – 182 .  

  21. Goulden , M. L. , Munger , J. W. , Fan , S.-M. , Daube , B. C. and Wofsy , S. C . 1996b . Exchange of carbon dioxide by a de-ciduous forest: Response to interannual climate variability. Science 271 , 1576 – 1578 .  

  22. Griffis , T. J. , Rouse , W. R. and Waddington , J. M . 2000 . Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Global Biogeochem. Cycles 14 , 1109 – 1121 .  

  23. Hollinger , D. Y. , Kelliher , F. M. , Schulze , E. D. , Bauer , G. , Arneth , A. , Byers , J. N. , Hunt , J. E. , McSeveny , T. M. , Kobak , K. I. , Milukova , I. , Sogatchev , A. , Tatarinov , F. , Varlargin , A. , Ziegler , W. and Vygodskaya, N. N. 1998. Forest—atmosphere carbon dioxide exchange in eastern Siberia. Agric. Forest Meteorol . 90 , 291 - 306 .  

  24. Jackson , R. B. , Canadell , J. , Ehleringer , J. R. , Mooney , H. A. , Sala , 0 . E. and Schulze, E. D. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108 , 389 - 411 .  

  25. Joiner , D. W. , Lafleur , P. M. , McCaughey , J. H. and Bartlett , P. A. 1999 . Interannual variability in carbon dioxide ex-changes at a boreal wetland in the BOREAS northern study area. J. Geophys. Res . 104 , D22,27663-27672.  

  26. Korhola , A. , Tolonen , K. , Turunen , J. and Jungner , H . 1995 . Estimating long-term carbon accumulation rates in boreal peatlands by radiocarbon dating. Radiocarbon 37 , 575 – 584 .  

  27. Kurbatova , J. , Arneth , A. , Vygodskaya , N. N. , Tchebakova , N. M. , Kolle , O. , Varlargin , A. B. , Milyukova , I. M. , Schulze , E.-D. and Lloyd , J. 2002 . Comparative ecosystem—atmosphere exchange of energy and mass in a European Russian and a central Siberian bog I. Intersea-sonal and interannual variability of energy and latent heat fluxes during the snowfree period. Tellus 54B , this issue .  

  28. Lafleur , P.M. , McCaughey , J. H. , Joiner , D. W. , Bartlett , P. A. and Jelinski, D. E. 1997. Seasonal trends in energy, water, and carbon dioxide fluxes at a northern boreal wetland. J. Geophys. Res. 102 , D24,29009-29020.  

  29. Lafleur , P.M. , Roulet , N. T. and Admiral, S. W. 2001. Annual cycle of CO2 exchange at a bog peatland. J. Geophys. Res . 106 , D3 , 3071-3081 .  

  30. Laurila , T. , Soegaard , H. , Lloyd , C. R. , Aurela , M. , Tuovinen , J.-P. , Nordstroem, C. 2001. Seasonal variations of net CO2 exchange in European Arctic ecosystems. Theor. Appl. Climatol . 70 , 183-201  

  31. Lloyd , J. and Taylor , J. A . 1994 . On the temperature depen-dence of soil respiration. Funct. Ecol . 8 , 315 - 323 .  

  32. Milyukova , I. M. , Kolle , 0. E. , Varlagin , A. B. , Vygodskaya , N. N. , Schulze , E.-D. and Lloyd , J. 2002 . Carbon balance of a southern taiga spruce forest in European Russia. Tellus 54B , this issue.  

  33. Moncrieff , J. B. , Malhi , Y. and Leuning , R . 1996 . The prop-agation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Global Change Biol . 2 , 231 – 240 .  

  34. Moore , T. R. and Dalva , M . 1993 . The influence of tem-perature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J. Soil Sci . 44 , 651 – 664 .  

  35. Nay , S. M. , Mattson , K. G. and Bormann , B. T . 1994 . Biases of chamber methods for measuring soil CO2 efflux demon-strated with a laboratory apparatus. Ecology 75 , 2460 – 2463 .  

  36. Neumann , H. H. and den Hartog , G . 1994 . Carbon diox-ide fluxes over a raised open bog at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES). J. Geophys. Res . 99 , D1 , 1529 – 1538 .  

  37. Nordstroem , C. , Soegaard , H. , Christensen , T. R. , Friborg , T. , Hansen, B. U. 2001. Seasonal carbon dioxide bal-ance and respiration of a high-arctic fen ecosystem in NE-Greenland. Theor. Appl. Climatol . 70 , 149 - 166 .  

  38. Nichol , C. J. , Lloyd , J. , Shibistova , O. , Arneth , A. , Röser , C. , Knohl , A. , Matsubara , S. and Grace , J. 2002 . Remote sensing of photosynthetic light-use efficiency of Siberian boreal forest. Tellus 54B , this issue.  

  39. Oechel , W. C. , Vourlitis , G. and Hastings , S. J . 1997 . Cold sea-son CO2 emission from arctic soils. Global Biogeochem. Cycles 11 , 163 – 172 .  

  40. Panikov , N. S. and Dedish , S. N . 2000 . Cold season CH4 and CO2 emission from boreal peat bogs (west Siberia): winter fluxes and thaw activation dynamics. Global Biogeochem. Cycles 14 , 1071 – 1080 .  

  41. Post , W. M. , Emanuel , W. R. , Zinke , P. J. and Stangenberger, A. G. 1982. Soil carbon pools and world life zones. Nature 298 , 156 - 159 .  

  42. Rapalee , G. , Trumbore , S. E. , Davidson , E. A. , Harden , J. W. and Veldhuis , H. 1998 . Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Global Biogeochem. Cycles 12 , 687 - 701 .  

  43. Shurpali , N. J. , Verma , S. B. and Kim , J. 1995 . Carbon dioxide exchange in a peatland ecosystem. J. Geophys. Res . 100 , D7,14319-14326.  

  44. Sjörs , H . 1980 . Peat on earth: multiple use or conservation? Ambio 9 , 303 – 308 .  

  45. She , O. and Oechel , W. C. 1981 . Moss functioning in dif-ferent taiga ecosystems in interior Alaska. Oecologia 48 , 50 - 59 .  

  46. Soegaard , H. and Nordstroem , C . 1999 . Carbon dioxide ex-change in a high-arctic fen estimated by eddy covariance measurements and modelling. Global Change Biol . 5 , 547 – 562 .  

  47. Suyker , A. E. , Verma , S. B. and Arkebauer , T. J. 1997 . Season-long measurement of carbon dioxide exchange in a boreal fen. J. Geophys. Res.-Atmos . 102 , D24,29021-29028.  

  48. Tchebakova , N. , Zolotoulchine , D. , Lloyd , J. , Kolle , O. , Vygodslcaya , N. N. and Schulze, E.-D. 2002. Inter-annual and seasonal variations of energy, water, and CO2 fluxes above a Pinus sylvestris forest in the Siberian middle taiga. Tellus 54B , this issue.  

  49. Thormann , M. N. , Szumigalski , A. R. and Bayley , S. E . 1999 . Aboveground peat and carbon accumulation poten-tials along a bog-fen-marsh wetland gradient in southern boreal Alberta, Canada. Wetlands 19 , 305 – 317 .  

  50. Trumbore , S. E. , Bubier , J. L. , Harden , J. W. and Crill, P. M. 1999. Carbon cycling in boreal wetlands: A comparison of three approaches. J. Geophys. Res . 104 , D22,27673-27682.  

  51. Turunen , J. , Pitkänen , A. , Tahvanainen , T. and Tolonen , K. 2001 . Carbon accumulation in West Siberian mires, Russia. Global Biogeochem. Cycles 15 , 285 - 296 .  

  52. Valentini , R. , Dore , S. , Marchi , G. , Mollicone , D. , Panfyorov , M. , Rebmann , C. , Kolle , O. and Schulze, E. D. 2000. Car-bon and water exchanges of two contrasting central Siberia landscape types: regenerating forest and bog. Funct. Ecol . 14 , 87 - 96 .  

  53. Waddington , J. M. and Roulet , N. T. 1996 . Atmosphere-wetland carbon exchanges: Scale dependency of CO2 and CH4 exchange on the developmental topography of a peat-land. Global Biogeochem. Cycles 10 , 233 - 245 .  

  54. Walter , H . 1977 . The oligotrophic peatlands of Western Siberia — the largest peino-helibiome in the world. Veg-etatio 34 , 167 – 178 .  

  55. Williams , T. G. and Flanagan , L. B . 1996 . Effect of changes in water content on photosynthesis, transpiration and dis-crimination against (CO2)-C-13 and (CO0)-0-18-0-16 in Pleurozium and Sphagnum. Oecologia 108 , 38 – 46 .  

  56. Wirth , C. , Schulze , E. D. , Schulze , W. , von Stunzner Karbe , D. , Ziegler , W. , Miljukova , I. M. , Sogatchev , A. , Varlagin , A. B. , Panvyorov , M. , Grigoriev , S. , Kusnetzova , W. , Siry , M. , Hardes , G. , Zimmermann , R. and Vygodslcaya, N. N. 1999. Above-ground biomass and structure of pristine Siberian Scots pine forests as con-trolled by competition and fire. Oecologia 121 , 66 - 80 .  

  57. Zoltai , S. C. and Pollen , F. C . 1983 . Wetlands in Canada: their classification, distribution and use. In: Mires: swamps, bog, fen and moor. Regional studies (ed. A. J. P. Gore). Ecosystems of the World 4B . Elsevier, Amsterdam, 245 - 268 .  

comments powered by Disqus