Start Submission Become a Reviewer

Reading: Comparative ecosystem–atmosphere exchange of energy and mass in a European Russian and a cen...

Download

A- A+
Alt. Display

Original Research Papers

Comparative ecosystem–atmosphere exchange of energy and mass in a European Russian and a central Siberian bog I. Interseasonal and interannual variability of energy and latent heat fluxes during the snowfree period

Authors:

Juliya Kurbatova ,

A. N. Severtzov Institute of Ecology and Evolution RAS, Lenisnki Prospect, Moscow, RU
X close

Almut Arneth,

Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena; Max Planck Institute for Meteorology, Bundesstrasse 55, 20146 Hamburg, DE
X close

Natasha N. Vygodskaya,

A. N. Severtzov Institute of Ecology and Evolution RAS, Lenisnki Prospect, Moscow, RU
X close

Olaf Kolle,

Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, DE
X close

Andrej V. Varlargin,

A. N. Severtzov Institute of Ecology and Evolution RAS, Lenisnki Prospect, Moscow, RU
X close

Irena M. Milyukova,

A. N. Severtzov Institute of Ecology and Evolution RAS, Lenisnki Prospect, Moscow, RU
X close

Nadja M. Tchebakova,

V. N. Sukachev Forest Institute, Akademgorodok, 660036 Krasnoyarsk, RU
X close

E.-D. Schulze,

Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, DE
X close

Jon Lloyd

Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, DE
X close

Abstract

Energy and latent heat fluxes λE were measured over ombrotrophic bogs in European Russia (Fyodorovskoye) and in central Siberia (Zotino) using the eddy covariance technique, as part of the EuroSiberian Carbonflux Project. The study covered most of the snowfree periods in 1998, 1999 and 2000; in addition some data were also collected under snow in early spring and late autumn 1999 and 2000. The snowfree period in Europian Russia exceeds the snowfree period in central Siberia by nearly 10 weeks. Marked seasonal and interannual differences in temperatures and precipitation, and hence energy partitioning, were observed at both sites. At both bogs latent heat fluxes (λE) exceeded sensible heat fluxes (H) during most of the snowfree period: maximum λE were between 10 and 12 MJ m−2 d−1 while maximum H were between 3 and 5 MJ m−2 d−1. There was a tendency towards higher Bowen ratios at Fyodorovskoye. Net radiation was the most influential variable that regulated daily evaporation rates, with no obvious effects due to surface dryness during years with exceptionally dry summers. Total snowfree evaporation at Fyodorovskoye (320 mm) exceeded totals at Zotino (280 mm) by 15%. At the former site, evaporation was equal to or less than precipitation, contrasting the Zotino observations, where summer evaporation was distinctly higher than precipitation. During the entire observation period evaporation rates were less than 50% of their potential rate. These data suggest a strong “mulching” effect of a rapidly drying peat surface on total evaporation, despite the substantial area of free water surfaces during parts of the year. This effect of surface dryness was also observed as close atmospheric coupling.

How to Cite: Kurbatova, J., Arneth, A., Vygodskaya, N.N., Kolle, O., Varlargin, A.V., Milyukova, I.M., Tchebakova, N.M., Schulze, E.-D. and Lloyd, J., 2002. Comparative ecosystem–atmosphere exchange of energy and mass in a European Russian and a central Siberian bog I. Interseasonal and interannual variability of energy and latent heat fluxes during the snowfree period. Tellus B: Chemical and Physical Meteorology, 54(5), pp.497–513. DOI: http://doi.org/10.3402/tellusb.v54i5.16683
1
Views
  Published on 01 Jan 2002
 Accepted on 28 May 2002            Submitted on 2 Jul 2001

References

  1. Arneth , A. , Kurbatova , J. , Lloyd , J ., Kolle , O. , Shibistova , O. , Vygodslcaya , N. N. and Schulze , E.-D. 2002a . Compara-tive ecosystem-atmosphere exchange of energy and mass in a European and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes. Tellus 54B, this issue.  

  2. Arneth , A. , Lloyd , J. , Santrucova , H. , Bird , M. , Grigoriev , S. , Brand , W. , Werner , R. , Gleixner , G. and Schulze , E.-D . 2002b . Response of central Siberian Scots pine in to soil water deficit and long-term trends in atmospheric CO2 concentration. Global Biogeochem. Cycles 16, 5/1-5/13.  

  3. Aubinet , M. , Grelle , A. , Ibrom , A. , Rannilc , U. , Moncrieff , J. , Foken , T. , Kowalski , A. S. , Martin , P. H. , Berbigier , P. , Bernhofer , C. , Clement , R. , Elbers , J. , Granier , A. , Grun-wald , T. , Morgenstern , K. , Pilegaard , K. , Rebmann , C. , Snijders , W. , Valentini , R. and Vesala , T . 2000 . Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res . 30 , 113 – 175 .  

  4. Botch , M. S. and Masing , V. V . 1983 . Mire ecosystems in the U.S.S.R. In: Mires: swamp, bog, fen and moor. Regional studies (ed. A. J. P. Gore). Ecosystems of the World 4B, Elsevier, Amsterdam, 95 - 152 .  

  5. Burba , G. G. , Verma , S. B. and Kim , J . 1999 . Surface energy fluxes of Phragmites australis in a prairie wetland. Agric. For. Meteorol . 94 , 31 – 51 .  

  6. Campbell , G. S . 1985 . Soil physics with Basic. Elsevier Sci-ence Publishers , Amsterdam .  

  7. Campbell , G. S. and Norman , J. M . 1998 . Introduction to environmental biophysics. Springer Verlag, New York.  

  8. den Hartog , G. , Neumann , H. H. , King , K. M. and Chipanshi , A. C. 1994 . Energy budget measurements usig eddy cor-relation and Bowen ratio techniques at the Kinosheo Lake tower site during the Northern Wetlands Study. J. Geophys. Res . 99 , D1 , 1539 – 1549 .  

  9. Eugster , W. and Senn , W . 1995 . A cospectral correction model for measurement of turbulent NO2 flux. Boundary-Layer Meteorol . 74 , 321 – 340 .  

  10. Halliwell , D. H. and Rouse , W. R . 1987 . Soil heat flux in permafrost: characteristics and accuracy of measurement. J. Climatol . 7 , 571 – 584 .  

  11. Ingram , H. A. P . 1996 . Hydrology. In: Mires: swamp, bog, fen and moor (ed. A. J. P. Gore). Ecosystems of the World 4A, Elsevier, Amsterdam, 67 - 158 .  

  12. Jarvis , P. G. and McNaughton , K. C . 1986 . Stomatal control of transpiration: scaling up from leaf to region. Adv. Ecol. Res . 15 , 1 – 49 .  

  13. Kelliher , F. M. , Leuning , R. , Raupach , M. R. and Schulze , E. D . 1995 . Maximum conductances for evaporation from global vegetation types. Agric. For. Meteorol . 73 , 1 - 16 .  

  14. Kelliher , F. M. , Lloyd , J. , Baldocchi , D. D. , Rebmann , C. , Wirth , C. and Schulze , E.-D. 2001 . Evaporation in the boreal zone during summer-physics and vegetation. In: Global biogeochemical cycles in the climate system (eds. E. D. Schulze, M. Heimann, S. Harrison, E. Holland, J. Lloyd, I. C. Prentice and D. Schimel). Academic Press, San Diego.  

  15. Kim , J. and Verma , S. B . 1996 . Surface exchange of wa-ter vapour between an open Sphagnum fen and the atmo-sphere. Boundary-Layer Meteorol . 79 , 243 – 264 .  

  16. Kobak , K. I. , Kondrasheva , N. Y. and Turchinovich , I. E . 1998 . Changes of carbon pools of peatland and forests in norhtwestern Russia durign the Holocene. Global and Planetary Change 16-17, 75 - 84 .  

  17. Lafleur , P. M . 1992 . Energy balance and evapotranspiration from a subarctic forest. Agr. For. Meteorol. 58 , 163 - 175 .  

  18. Lafleur , P.M. and Rouse , W. R . 1988 . The influence of surface cover and climate on energy partitioning and evaporation in a subarctic wetland. Boundary-Layer Meteorol . 44 , 327 – 347 .  

  19. Lafleur , P. M. , McCaughey , J. H. , Joiner , D. W. , Bartlett , P. A. and Jelinski , D. E . 1997 . Seasonal trends in en-ergy, water, and carbon dioxide fluxes at a northern boreal wetland./. Geophys. Res.-Atmos . 102 , D24 , 29009 – 29020 .  

  20. Lhomme , J.-P. 1997 . Towards a rational definition of potential evaporation. Hydrol. Earth System Sci . 1 , 257 - 267 .  

  21. Milyukova , I. M. , Kolle , 0. E. , Varlagin , A. B. , Vygodslcaya , N. N. , Schulze , E.-D. and Lloyd , J. 2002 . Carbon balance of a Southern Taiga spruce stand in European Russia. Tellus 54B , this issue.  

  22. Moncrieff , J. B. , Malhi , Y. and Leuning , R. 1996 . The prop-agation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Global Change Biol . 2 , 231 - 240 .  

  23. Monteith , J. L. and Unsworth , M . 1990 . Principles of envi-ronmental physics. Arnold , London , 291 pp .  

  24. Moore , K. E. , Fitzjarrald , D. R. , Wofsy , S. C. , Daube , B. C. , Munger , J. W. , Bakwin , P. S. and Crill , P. 1994 . A season of heat, water vapor, total hydrocarbon, and ozone fluxes at a subarctic fen. J. Geophys. Res . 99 , D1 , 1937 - 1952 .  

  25. Nichol , C. J. , Lloyd , J. , Shibistova , O. , Arneth , A. , Röser , C. , Knohl , A. , Matsubara , S. and Grace , J. 2002 . Remote sensing of photosynthetic light-use efficiency of Siberian boreal forest. Tellus 54B , this issue.  

  26. Piyavchenko , N. I . 1980 . Bogging up of forest zone process (in Russian). Significance of bogs in biosphere 7 – 15 .  

  27. Rouse , W. R. , Hardhill , S. G. and Lafleur , P. 1987 . The en-ergy balance in the coastal environment of James Bay and Hudson Bay during the growing season. J. Climatol . 7 , 165 - 179 .  

  28. Tchebakova , N. , Kolle , O. , Zolotoukhine , D. , Arneth , A. , Styles , J. , Vygodskaya , N. N. , Schulze , E.-D. , Shibistova , O. and Lloyd , J. 2002 . Inter-annual and seasonal variations of energy, water, and CO2 fluxes above a Pinus sylvestris in the Siberian middle taiga. Tellus 54B , this issue.  

  29. Twine , T. E. , Kustas , W. P. , Norman , J. M. , Cook , D. R. , Houser , P. R. , Meyers , T. P. , Prueger , J. H. , Starks , P. J. , Wesely, M. L. 2000. Correcting eddy-covariance flux un-derestimates over a grassland. Agric. For. Meteorol . 103 , 279 - 300 .  

  30. Valentini , R. , Dore , S. , Marchi , G. , Mollicone , D. , Panfyorov , M. , Rebmann , C. , Kolle , O. and Schulze , E. D. 2000 . Car-bon and water exchanges of two contrasting central Siberia landscape types: regenerating forest and bog. Funct. Ecol . 14 , 87 - 96 .  

  31. Wheeler , B. D. and Proctor , M. C. E 2000 . Ecological gra-dients, subdivisions and terminology of north-western Eu-ropean mires. J. Ecol . 88 , 187 – 203 .  

comments powered by Disqus