Start Submission Become a Reviewer

Reading: Carbon balance of a southern taiga spruce stand in European Russia

Download

A- A+
Alt. Display

Original Research Papers

Carbon balance of a southern taiga spruce stand in European Russia

Authors:

Irena M. Milyukova ,

Sukachev’s Laboratory of the Institute of Evolution and Ecology Problems, Russian Academy of Sciences, Leninsky Prospect 33, 117071 Moscow, RU
X close

Olaf Kolle,

Max Planck Institute for Biogeochemistry, Postfach 10 01 64, 07701 Jena, DE
X close

Andrej V. Varlagin,

Sukachev’s Laboratory of the Institute of Evolution and Ecology Problems, Russian Academy of Sciences, Leninsky Prospect 33, 117071 Moscow, RU
X close

Natalia N. Vygodskaya,

Sukachev’s Laboratory of the Institute of Evolution and Ecology Problems, Russian Academy of Sciences, Leninsky Prospect 33, 117071 Moscow, RU
X close

E.-Detlef Schulze,

Max Planck Institute for Biogeochemistry, Postfach 10 01 64, 07701 Jena, DE
X close

Jon Lloyd

Max Planck Institute for Biogeochemistry, Postfach 10 01 64, 07701 Jena, DE
X close

Abstract

We present results from nearly three years of net ecosystem flux measurements above a boreal spruce stand growing in European Russia. Fluxes were measured by eddy covariance using conventional techniques. In all years examined (1998–2000), the forest was a significant source of carbon to the atmosphere. However, the magnitude of this inferred source depended upon assumptions regarding the degree of “flux” loss under conditions of low turbulence, such as typically occur at night. When corrections were not made, the forest was calculated to be only a modest source of C to the atmosphere (3–5 mol C m−2 yr−1). However, when the corrections were included, the apparent source was much larger (20–30 mol C m−2 yr−1). Using a simple model to describe the temperature dependencies of ecosystem respiration on air and soil temperatures, about 80% of the night-time flux was inferred to be from soil respiration, with the remainder being attributable to foliage, branches and boles. We used reasonable assumptions to estimate the rate of ecosystem respiration during the day, allowing an estimation of canopy photosynthetic rates and hence the annual Gross Primary Productivity of the ecosystem. For the two full years examined (1999 and 2000), this was estimated at 122 and 130 mol C m−2 yr−1, respectively. This value is similar to estimates for boreal forests in Scandinavia, but substantially higher than has been reported for Canadian or Siberian boreal forests. There was a clear tendency for canopy photosynthetic rates to increase with both light and temperature, but the slope of the temperature response of photosynthesis was less steep that that of ecosystem respiration. Thus, on most warm days in summer the forest was a substantial source of carbon to the atmosphere; with the forest usually being a net sink only on high insolation days where the average daily air temperatures were below about 18 °C. These data, along with other studies on the current balance of boreal ecosystems, suggests that at the current time many boreal forests might be releasing substantial amounts of carbon dioxide to the atmosphere. This observed temperature sensitivity of this ecosystem suggests that this might be a consequence of substantially higher than average temperatures over recent years.xs

How to Cite: Milyukova, I.M., Kolle, O., Varlagin, A.V., Vygodskaya, N.N., Schulze, E.-D. and Lloyd, J., 2002. Carbon balance of a southern taiga spruce stand in European Russia. Tellus B: Chemical and Physical Meteorology, 54(5), pp.429–442. DOI: http://doi.org/10.3402/tellusb.v54i5.16679
2
Views
  Published on 01 Jan 2002
 Accepted on 19 Jun 2002            Submitted on 10 Oct 2001

References

  1. Abrajko , M. A . 1973 . Regularities in distribution and fraction-composition of underground plant biomass. In: Structure and productivity of spruce forest of south taiga. (ed. V. G. Karpov). Nauka, Leningrad , 109-117 (in Russian ).  

  2. Amiro , B. D . 2001 . Paired-tower measurements of carbon and energy fluxes following disturbance in the boreal forest. Global Change Biol . 7 , 253 – 268 .  

  3. Brooks , A. and Farquhar , G. D . 1985 . Effect of tem-perature on the CO2/02 specificity of ribulose-1, 5-bisphosphatecarboxylase/oxygenase and the rate of res-piration in the light. Planta 165 , 397 – 406 .  

  4. Brown , R. D . 2000 . Northern hemisphere snow cover vari-ability and change. J. Climate 13 , 2339 – 2355 .  

  5. Ciais , P. , Tans , P. P. , White , J. W. C. , Trolier , M. , Francey , R. J. , Berry , J. A. , Randall , D. , Sellers , P. , Collatz , J. G. and Schimel , D. S . 1995 . Partitioning of ocean and land uptake of CO2 as inferred by 313C measurements from the NOAA Climate Modelling and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res . 100 , 5051 – 5070 .  

  6. Ciais , R , Peylin , P. and Bousquet , P . 2000 . Regional bio-spheric carbon fluxes as inferred from atmospheric CO2 measurements. Ecol. Appl . 10 , 1574 – 1589 .  

  7. Eugster , W. and Senn , W . 1995 . A cospectral correction model for measurement of turbulent NO2 flux. Boundary-Layer Meteorol . 74 , 321 – 340 .  

  8. Fan , S. , Gloor , M. , Mahlman , J. , Pacala , S. , Sarmiento , J. , Takahashi , T. and Tans , P . 1998 . A large terrestrial sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282 , 754 – 759 .  

  9. Foken , T. and Wichura , B . 1996 . Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol . 78 , 83 – 105 .  

  10. Goulden , M. L. , Munger , J. W. , Fan , S.-M. , Daube , B. C. and Wofsy , S. C . 1996 . Measurements of carbon seques-tration by long-term eddy covariance: Methods and a crit-ical evaluation of accuracy. Global Change Biol . 2 , 169 – 182 .  

  11. Goulden , M. L. , Wofsy , S. C. , Harden , J. W. , Trumborne , S. E. , Crill , P. M. , Gower , S. T. , Fries , T. , Daube , B. C. , Fan , S.-M. , Sitton , D. J. , Bazzaz , A. and Munger , D. W . 1998 . Sensitivity of boreal forest carbon balance to soil thaw. Science 279 , 214 – 217 .  

  12. Grace , J. , Lloyd , J. , McIntyre , J. , Miranda , A. C. , Meir , P. , Miranda , H. , Nobre , C. , Moncrieff , J. , Malhi , Y. , Wright , I. and Gash , J . 1995 . Carbon dioxide uptake by an undis-turbed tropical rain forest in South-West Amazonia, 1992-1993. Science 270 , 778 – 780 .  

  13. Grace , J. , Malhi , Y. , Lloyd , J. , McIntyre , J. , Miranda , A. C. , Meir , P. and Miranda , H . 1996 . The use of eddy covariance to infer the carbon balance of Brazilian rain forests. Global Change Biol . 2 , 209 – 218 .  

  14. Grelle , A . 1997 . Long-term water and carbon dioxide fluxes from boreal forest: methods and applications. Acta Uni-vrsitatis Agriculturae Sueciae, Silvestria 28 Uppsala, Sweden, 200 pp (Ph. D. thesis).  

  15. Groisman, P. Ya. and Rankova, E. Ya . 2001 . Precipitation trends over the Russian permafrost-free zone: Removing the artefacts of pre-processing. Int. J. Climatol . 21 , 657 – 678 .  

  16. Groisman, P. Ya. , Karl , T. R. , Knight , R. W. and Stenchikov , G. L . 1994 . Changes of snow cover, temperature and radia-tive heat balance over the Northern Hemipshere. J. Climate 7 , 1633 – 1656 .  

  17. Groisman, P. Ya. , Genikhovich , E. L. , Easterling , D. R. , Knight , R. W. , Jamason , P. F. , Hennessy , K. J. , Supphiah , R. , Page , Ch. M. , Wibig , L. , Fortinialc , K. , Razuvaev , V. N. , Douglas , A. , Forland , E. and Zhai , P.-M. 1999. Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change 42 , 243 - 283 .  

  18. Harmon , M. E. , Franklin , J. F. , Swanson , F. J , Sollins , P. , Gregory , S. V. , Latin , J. D. , Anderson , N. H. , Cline , S. P. , Aumen , N. G. , Sedell , J. R. , Lienlcaemper , G. W. , Cromak , K. and Cummins , K. W . 1986 . Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res . 15 , 133 – 156 .  

  19. Janssens , LA. , Lankreijer , H. , Matteucci , G. , Kowalski , A. S. , Buchmann , N. , Epron , D. , Pilegaard , K. , Kutsch , W. , Longdoz , B. , Grunwald , T. , Montagnani , L. , Dore , S. , Rebmann , C. , Moors , E. J. , Grelle , A. , Rannilc , U. , Morgenstern , K. , Oltchev , S. , Clement , R. , Gudmundsson , J. , Minerbi , S. , Berbigier , P. , Ibrom , A. , Moncrieff , J. , Aubinet , M. , Bernhofer , C. , Jensen , N. O. , Vesala , T. , Granier , A. , Schulze , E.-D. , Lindroth , A. , Dolman , A. J. , Jarvis , P. G. , Ceulemans , R. and Valentini , R. 2001 . Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol . 7 , 269 - 279 .  

  20. Jarvis , P. G. , Massheder , J. M. , Hale , S. E. , Moncrieff , J. B. , Rayment , M. and Scott , S. L . 1997 . Seasonal variation of carbon dioxide, water vapor and energy exchanges of a boreal black spruce forest. J. Geophys. Res . 102 , 28953 – 28966 .  

  21. Jarvis PG. , Dolman , A. J. , Schulze , E. D. , Matteucci , G. , Kowalski , A. S. , Ceulemans , R. , Rebmann , C. , Moors , E. J. , Granier , A. , Gross , P. , Jensen , N. O. , Pilegaard , K. , Lindroth , A. , Grelle , A. , Bernhofer , C. , Grunwald , T. , Aubinet , M. , Vesala , T. , Rannik , U. , Berbigier , R , Loustau , D. , Guomundson , J. , Ibrom , A. , Morgenstern, Clement , R. , Moncrieff , J. , Montagnani , L. , Minerbi , S. and Valentini , R. 2001 . Carbon balance gradient in European forests: should we doubt ‘surprising’ results A reply to Piovesan & Adams. J. Veg. Sci . 12 , 145 - 150 .  

  22. Kaminski , T. , Heimann , M. and Giering , R . 1999 . A coarse grid three-dimensional global inverse model of the atmo-spheric transport - 2. Inversion of the transport of CO2 in the 1980s. J. Geophys. Res . 104 , 18555 – 18581 .  

  23. Karpov , V. G . 1973 . Structure and productivity of spruce for-est of south taiga . Nauka, Leningrad, 311 pp (in Russian).  

  24. Karpov , V. G. and Shaposhnikov , E. S . 1983 . Spruce forests of the territory. In: Regulation factors of spruce forest ecosystems . Nauka, Leningrad, 7-31 (in Russian).  

  25. Knohl , A. , Kolle , 0. E. E. , Minayeva , T. I. , Milyukova , I. M. , Vygodskaya , N. N. , Foken , T. and Schulze , E.-D. 2002 . Carbon exchange of a Russian boreal forest after windthrow. Global Change Biol . 8 , 231 - 246 .  

  26. Lindroth , A. , Grelle , A. and Moren , A.-S . 1998 . Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol . 4 , 443 – 450 .  

  27. Lloyd , J. and Farquhar , G. D . 1996 . The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interactions with soil nutrient sta-tus I. General principles and forest ecosystems. Func.Ecol . 10 , 4 – 32 .  

  28. Lloyd , J . 1999 . The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interactions with soil nutrient status II. Temperate and bo-real forest productivity and the combined effects of increas-ing CO2 concentrations and increased nitrogen deposition at a global scale Funct. Ecol. 13 , 439 – 459 .  

  29. Lloyd et al. , 2002 .  

  30. Ludeke , M. K. B. , Donges , S. , Otto , R. D. , Kindermann , J. , Badeck , F. W. , Ramge , F. , Jakel , D. and Kohlmaier , G. H. 1995. Responses in NPP and carbon stores of the northern biomes to a CO2-induced climatic-change, as evaluated by the Frankfurt Biosphere Model (FBM). Tellus 47B , 191 – 205 .  

  31. Malhi , Y. , Baldocchi , D. D. and Jarvis , P. G . 1999 . The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ . 22 , 715 – 740 .  

  32. Marklcanen , T. , Rannilc , Ü. , Keronen , P. , Suni , T. and Vesala , T. 2001. Eddy covariance fluxes over a boreal Scots pine forest. Boreal Environ. Res . 6 , 65 - 78 .  

  33. McMillen , R. T . 1988 . An eddy correlation technique with extended applicability to non-simple terraine. Boundary Layer Meteorol . 43 , 231 – 245 .  

  34. Moncrieff et al. , 1996 .  

  35. Outcalt , S. I. , Nelson , FE. and Hinkel , K. M. 1990 . The zero-curtain effect: heat and mass transfer across an isothermal region in freezing soil. Wat. Resour. Res . 26 , 1509 – 1516 .  

  36. Randerson , J. T. , Field , C. B. , Fung , I. Y. and Tans , P. P. 1999 . Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett . 26 , 2765 - 2768 .  

  37. Rayner , P. J. , Enting , I. G. , Francey , R. J. and Langenfelds , R. 1999 . Reconstructing the recent carbon cycle from at-mospheric CO2, 13C and 02/N2observations. Tellus 51B , 213 - 232 .  

  38. Ryan , M. G. , Lavigne , M. B. and Gower , S. T . 1997 . An-nual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res . 102 , 28871 – 28883 .  

  39. Schulze , E.-D. , Lloyd , J. , Kelliher , F. M. , Wirth , C. , Rebmann , C. , Luhker , B. , Mund , M. , Knohl , A. , Milyukova , I. M. , Schulze , W. , Ziegler , W. , Varlagin , A. B. , Sogachev , A. F. , Valentini , R. , Dore , S. , Grigoriev , S. , Kolle , O. , Panfyorov , M. I. , Tchebalcova , N. and Vygod-skaya, N. N. 1999. Productivity of forests in the Eurosi-berian boreal region and their potential to act as a carbon sink - a synthesis. Global Change Biol . 5 , 703 - 722 .  

  40. Schulze , E.-D. , Vygodskaya , N. N. , Tchebalcova , N. M. , Czimczilc , C. I. , Kozlov , D. , Lloyd , J. , Mollicone , D. , Parfenova , E. , Siderov , K. N. , Varlagin , A. and Wirth , Ch. 2002 . The EuroSiberian Transect: An introduction to the experimental region. Tellus 54B , this issue.  

  41. Serreze , M. C. , Walsh , J. E ., Cgapin BI , F. S. , Osterkamp , T. , Dyurgerov , M. , Romanovsky , V. , Oechel , W. C. , Morison , J. , Zhang , T. and Barry , R. G. 2000 . Observa-tional evidence for recent change in the northern high-latitude environment. Climatic Change 46 , 159 - 207 .  

  42. Shibistova , O. , Lloyd , J. , Evgrafova , S. , Savushlcina , N. , Zrazhewslcaya , G. , Arneth , A. , Knohl , A. , Kolle , O. and Schulze, E.-D. 2002. Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus 54B , this issue.  

  43. Smith , F. W. and Long , J. N . 2001 . Age-related decline in forest growth: an emergent property. Forest Ecol. Manag . 144 , 175 – 181 .  

  44. Sogachev et al. , 2002 .  

  45. Sumgin , M. I. , Kachurin , N. I. , Tolstilcin , N. I. and Tumel , V. F. 1940 . General Permafrostology . Akademiia Nauk SSR, Moscow, 240 pp (in Russian).  

  46. Sun , B. and Groisman, P. Ya . 2000 . Cloudiness variations over the former Soviet Union. Int. J. Climatol . 20 , 1097 – 1111 .  

  47. Sun , B. , Groisman , P. Ya. and Mokhov, I. I. 2001. Recent changes in could-type frequency in inferred increases in convection over the Unites States and the Former USSR. J. Climate 14 , 1864 – 1880 .  

  48. Tans , P. P. , Fung , I. Y. and Takahashi , T. 1990 . Observational constraints of the global atmospheric CO2 budget. Science 247 , 1431 - 1438 .  

  49. Valentini , R. , Metteucci , G. , Dolman , A. J. et al., 2000 , Respiration as the main determinant of carbon balance in Eu-ropean forests . Nature 404 , 861 – 865 .  

  50. Vaganov , E. A. , Hughes , M. K. , Kirdyanov , A. V. , Schweingruber , F. H. and Sillcin , P. P . 1999 . Influence of snowfall and melt timing on tree growth in subarctic Eura-sia. Nature 400 , 149 – 151 .  

  51. Villar , R. , Held , A. A. and Merino , J . 1995 . Dark leaf respira-tion in light and darkness of an evergreen and a deciduous plant species. Plant Physiol . 107 , 421 – 427 .  

  52. Vygodskaya , N. N. , Schulze , E.-D. , Tchebalcova , N. M. , Karpachevskii , L. L. , Kozlov , D. , Siderov , K. N. , Panfyorov , M. I. , Abrazlcvo , M. I. , Shaposchnikov , E. S. , Solnezeve , 0. N. , Minaeva , T. I. , Jeltuchin , A. S. and Pugachevshii , M. Y. 2002. Climatic control of stand thin-ning in unmanaged spruce forests of the southern taiga in European Russia. Tellus 54B , this issue.  

  53. Wirth , C. , Schulze , E.-D. , Kusznetova , V. , Hardes , G. , Siry , M. , Schulze , B. and Vygodskaya , N. N . 2001 . Comparing the influence of site quality, stand age, fire and climate on aboveground tree production in Siberian Scots pine forests. Tree Physiol . 22 , 537 – 552 .  

  54. Wirth , C. , Czimczilc , C. I. and Schulze , E.-D . 2002 . Beyond annual budgets: carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus 54B , this issue.  

comments powered by Disqus