Start Submission Become a Reviewer

Reading: Methane emissions from different ecosystem structures of the subarctic tundra in Western Sib...

Download

A- A+
Alt. Display

Original Research Papers

Methane emissions from different ecosystem structures of the subarctic tundra in Western Siberia during midsummer and during the thawing period

Authors:

Jürgen Heyer ,

Fraunhofer Institute for Atmospheric Environmental Research, DE
X close

Ursula Berger,

Fraunhofer Institute for Atmospheric Environmental Research, DE
X close

Ivan Leontevich Kuzin,

All-Russia Petroleum Scientific-Research Geological-Exploration Institute, RU
X close

Oleg Nikolaevich Yakovlev

All-Russia Petroleum Scientific-Research Geological-Exploration Institute, RU
X close

Abstract

Methane emission was measured using a static chamber method at seven different ecosystem structures of the subarctic tundra on the Yamal Peninsula (West Siberian Lowlands, Russia) in August 1995 (midsummer) and June 1996 (spring thaw). The results obtained represent one of the most extensive data sets available for Siberian tundra and confirm the significance of this area as an important source of atmospheric methane. Mean midsummer emission rates (4.24–195.3 mg CH4 m−2 d−1) were higher than mean rates reported for wetlands between 65–70°N in Alaska, Sweden and Russia. The highest emission rates were measured in a lake terrestrialization mire which was always flooded, the lowest rates at a dry site in a polygonal mire. Mean emission rates during spring thaw ranged from 0.16 to 56.2 mg CH4 m−2 d−1. These rates increased at 4 out of 5 sites from 2.4–15.1 mg CH4 m−2 d−1 at the beginning of the measuring period to 24.2–156 mg CH4 m−2 d−1 at the end. The water-table level was the crucial parameter influencing spatial variation of methane emission rates, while temperature was the most important factor controlling temporal variation, especially during spring thaw. However, short-term changes of air temperature had no effect, and diurnal variation of methane emissions was never detected. In addition to the direct influence of temperature on methanogenesis, the indirect effect on soil thawing was apparent. Increasing thawing depth was positively correlated with methane emission. Rapid alterations of the water table also resulted in large episodic methane emissions. Methane emission exceeded the calculated methane production in spring, suggesting that accumulated methane from the previous year was also released. The results show that considerable methane emission occurs even in the spring without an active vegetation cover and without plant-mediated methane transport. This is a consequence of high methane production rates even at low temperatures, and of methane release via diffusion as the main transport pathway from the soil into the atmosphere.

How to Cite: Heyer, J., Berger, U., Kuzin, I.L. and Yakovlev, O.N., 2002. Methane emissions from different ecosystem structures of the subarctic tundra in Western Siberia during midsummer and during the thawing period. Tellus B: Chemical and Physical Meteorology, 54(3), pp.231–249. DOI: http://doi.org/10.3402/tellusb.v54i3.16663
5
Views
4
Downloads
  Published on 01 Jan 2002
 Accepted on 17 Jan 2002            Submitted on 15 Jan 2001

References

  1. Alm , J. , Talanov , A. , Saarnio , S. , Silvola , J. , Ikkonen , E. , Aaltonen , H. , Nykänen , H. and Martikainen , P. J . 1997 . Reconstruction of the carbon balance for micro-sites in a boreal oligotrophic pine fen, Finland. Oecologia 110 , 423 – 431 .  

  2. Bartlett , K. B. , Crill , P. M. , Sass , R. L. , Harriss , R. C. and Dise , N. B . 1992 . Methane emissions from tundra environments in the Yukon-Kuskokwim Delta, Alaska. J. Geophys. Res . 97 , 16 , 645-16 , 660 .  

  3. Botch , M. S. , Kobak , K. I. , Vinson , T. S. and Kolchugina , T. P . 1995 . Carbon pools and accumulation in peat-lands of the former Soviet Union. Glob. Biogeochem. Cycles 9 , 37 – 46 .  

  4. Bubier , J. L . 1995 . The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. J. Ecol . 83 , 403 – 420 .  

  5. Bubier , J. L. , Moore , T. R. , Bellisario , L. , Comer , N. T. and Crill , P. M . 1995 . Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Glob. Biogeochem. Cycles 9 , 455 – 470 .  

  6. Chanton , J. P. , Bauer , J. E. , Glaser , P. A. , Siegel , D. E. , Kelley , C. A. , Tyler , S. C. , Romanowicz , E. H. and Lazrus , A . 1995 . Radiocarbon evidence for the sub-strates supporting methane formation within northern Minnesota peatlands. Geochim. Cosmochim. Acta 59 , 3663 – 3668 .  

  7. Chanton , J. P. , Whiting , G. J. , Happell , J. D. and Gerard , G . 1993 . Contrasting rates and diurnal pat-terns of methane emission from emergent aquatic macrophytes. Aquat. Bot . 46 , 111 – 128 .  

  8. Christensen , T. R . 1993 . Methane emission from arctic tundra. Biogeochemistry 21 , 117 – 139 .  

  9. Christensen , T. R. , Jonasson , S. , Callaghan , T. V. and Havström , M . 1995 . Spatial variation in high-latitude methane flux along a transsect across Siberian and European tundra environments. J. Geophys. Res . 100 , 21 , 035-21 , 045 .  

  10. Cicerone , R. J. and Oremland , R. S . 1988 . Biogeochem-ical aspects of atmospheric methane. Glob. Biogeo-chem. Cycles 2 , 299 – 327 .  

  11. Dise , N. B . 1992 . Winter fluxes of methane from Minne-sota peatlands. Biogeochemistry 17 , 71 – 83 .  

  12. Dise , N. B. , Gorham , E. and Verry , E. S . 1993 . Environ-mental factors controlling methane emissions from peatlands in Northern Minnesota. J. Geophys. Res . 98 , 10 , 583-10 , 594 .  

  13. Edwards , G. C. , Neumann , H. H. , den Hartog , G. , Thur-tell , G. W. and Kidd , G. 1994. Ed dy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake tower site during the Northern Wetland Study NOWES. J. Geophys. Res . 99 , 1511 - 1517 .  

  14. Friborg , T. , Christensen , T. R. and Sogaard , H . 1997 . Rapid response of greenhouse gas emission to early spring thaw in a subarctic mire as shown by micro-meteorological techniques. Geophys. Res. Lett . 24 , 3061 – 3064 .  

  15. Frolking , S. and Crill , P. M . 1994 . Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: Measurement and modeling. Glob. Biogeochem. Cycles 8 , 385 – 397 .  

  16. Glooschenko , W. A. , Roulet , N. T. , Barnes , L. A. , Schiff , H. I. and McAdie , H. G . 1994 . The Northern Wetland Study NOWES: an overview. J. Geophys. Res . 99 , 1423 – 1428 .  

  17. Gorham , E . 1991 . Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl . 1 , 182 – 195 .  

  18. Granberg , G. , Mikkelä , C. , Sundh , I. , Svensson , B. H. and Nilsson , M. 1997 . Sources of spatial variation in methane emission from mires in northern Sweden: a mechanistic approach in statistical modeling. Glob. Biogeochem. Cycles 11 , 135 - 150 .  

  19. Hesslein , R. H . 1976 . An in situ sampler for close pore water studies. Limnol. Oceanogr . 21 , 912 – 914 .  

  20. Heyer , J. and Suckow , R . 1985 . Okologische Unter-suchungen der Methanoxydation in einem sauren Moorsee. Limnologica 16 , 247 – 266 .  

  21. Hutchin , P. R. , Press , M. C. , Lee , J. A. and Ashenden , T. W . 1996 . Methane emission rates from an ombro-trophic mire show marked seasonality which is inde-pendent of nitrogen supply and soil temperature. Atmos. Environ . 30 , 3011 – 3015 .  

  22. IPCC 1992 . Intergovermental Panel on Climate Change: Climate Change 1992. The Supplementary report to the IPCC Scientific Assesment Report prepared for IPCC by Working Group 1 (eds. J. T. Houghton, B. A. Callander and S. K. Varney). Cambridge University Press, Cambridge, UK, 1 - 200 .  

  23. Kettunen , A. , Kaitala , V. , Alm , J. , Silvola , J. , Nykänen , H. and Martikainen , P. J . 1996 . Cross-correlation analysis of the dynamics of methane emissions from a boreal peatland. Glob. Biogeochem. Cycles 10 , 457 – 471 .  

  24. King , G. M. , Quay , P. D. and Lansdown , J. M . 1989 The “C/“C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations. J. Geophys. Res . 94 , 18 , 273-18 , 277 .  

  25. Kotsyurbenko , 0. R. , Nozhevnikova , A. N. and Zavarzin , G. A. 1993 . Methanogenic degradation of organic matter by anaerobic bacteria at low temperature. Chemosphere 27 , 1745 – 1761 .  

  26. Makov , G. A. , Bazhin , N. M. and Efremova , T. T . 1994 . Methane emission from wetlands in the region between the Ob and Tom rivers. Chemistry for Sustain-able Development 2-3, 541 - 544 .  

  27. Matthews , E . 1993 . Wetlands. In: Atmospheric methane: sources, sinks, and role in global change (ed. M. A. K. Khalil). Springer Verlag, Berlin, 314 - 361 .  

  28. Melloh , R. and Crill , P. M . 1996 . Winter methane dynamics in a temperate peatland. Glob. Biogeochem. Cycles 10 , 247 – 254 .  

  29. Mikkeld , C. , Sundh , I. , Svensson , B. H. and Nilsson , M. 1995 . Diurnal variation in methane emission in rela-tion to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire. Biogeochem-istry 28 , 93 - 114 .  

  30. Moore , T. R. and Dalva , M . 1997 . Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol. Bio-chem . 29 , 1157 – 1164 .  

  31. Moore , T. R. , Heyes , A. and Roulet , N. T . 1994 . Methane emissions from wetlands, southern Hudson Bay low-land. J. Geophys. Res . 99 , 1455 – 1467 .  

  32. Moore , T. R. and Roulet , N. T . 1993 . Methane flux: water table relations in northern wetlands. Geophys. Res. Lett . 20 , 587 – 590 .  

  33. Moore , T. R. , Roulet , N. T. and Knowles , R . 1990 . Spatial and temporal variations of methane flux from subarc-tic/northern boreal fens. Glob. Biogeochem. Cycles 4 , 29 – 46 .  

  34. Moosavi , S. C. , Crill , P. M. , Pullman , E. R. , Funk , D. W. and Peterson , K. M . 1996 . Control of CH4 flux from an Alaskan boreal wetland. Glob. Biogeochem. Cycles 10 , 287 – 296 .  

  35. Morrissey , L. A. and Livingston , G. P . 1992 . Methane emissions from Alaska arctic tundra: an assessment of local spatial variability. J. Geophys. Res . 97 , 16,661 - 16,670 .  

  36. Nykänen , H. , Alm , J. , Lang , K. , Silvola , J. and Marti-kainen , P. J . 1995 . Emission of CH4, N20 and CO2 from a virgin fen and a fen drained for grassland in Finland. J. Biogeogr . 22 , 351 – 357 .  

  37. Oechel , W. C. and Vourlitis , G. L . 1994 . The effects of climate change on land-atmosphere feedbacks in arctic tundra regions [Review]. Trends Ecol. Evolution 9 , 324 – 329 .  

  38. Panikov , N. S. , Belyaev , A. S. , Semenov , A. F. and Zelenev , V. V . 1993 . Methane production and uptake in some terrestrial ecosystems of the former USSR. In: Biogeochemistry of global change - radiatively active trace gases (ed. R. S. Oremland). Chapman and Hall , New York , 221 – 244 .  

  39. Panikov , N. S. , Sizova , M. V. , Zelenev , V. V. , Machov , G. A. , Naumov , A. V. and Gadzhiev , I. M . 1995 . Methane and carbon dioxide emission from several Vasyugan wetlands: spatial and temporal flux vari-ations. Ecol. Chem . 4 , 13 – 23 .  

  40. Roulet , N. T. , Moore , T. R. , Bubier , J. L. and Lafleur , P . 1992 . Northern fens: methane flux and climatic change. Tellus 44B , 100 – 105 .  

  41. Saarnio , S. , Alm , J. , Silvola , J. , Lohila , A. , Nykänen , H. and Martikainen , P. J . 1997 . Seasonal variation in CH4 emissions and production and oxidation poten-tials at microsites on an oligotrophic pine fen. Oecologia 110 , 414 – 422 .  

  42. Sebacher , H. J. , Harriss , R. C. , Bartlett , K. B. , Sebacher , S. M. and Grice , S. S . 1986 . Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh. Tellus 38B , 1 – 10 .  

  43. Semiletov , I. P. , Pipko , I. I. , Pivovarov , N. Y. , Popov , V. V. , Zimov , S. A. , Voropaev , Y. V. and Davidov , S. P. 1996 . Atmospheric carbon emission from north Asian lakes: a factor of global significance. Atmos. Environ . 30 , 1657 – 1671 .  

  44. Smith , L. K. and Lewis , W. M . 1992 . Seasonality of methane emissions from five lakes and associated wet-lands of the Colorado Rockies. Glob. Biogeochem. Cycles 6 , 323 – 338 .  

  45. Sundh , I. , Nilsson , M. , Granberg , G. and Svensson , B. H. 1994 . Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. Microb. Ecol . 27 , 253 - 265 .  

  46. Svensson , B. H . 1976 . Methane production in tundra peat. Microbial Production and Utilization of Gases H2, CO, CH4 (eds. H. G. Schlegel, G. Gottschalk and N. Pfennig). G6ttingen, 135 - 139 .  

  47. Svensson , B. H. and Rosswall , T . 1984 . In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos 43 , 341 – 350 .  

  48. Svensson , B. H . 1984 . Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. App!. Environ. Microbiol . 48 , 389 – 394 .  

  49. Thomas , K. L. , Benstead , J. , Davies , K. L. and Lloyd , D . 1996 . Role of wetland plants in the diurnal control of CH4 and CO, fluxes in peat. Soil Biol. Biochem . 28 , 17 – 23 .  

  50. Valentine , D. W. , Holland , E. A. and Schimel , D. S . 1994 . Ecosystem and physiological controls over methane production in northern wetlands. J. Geophys. Res . 99 , 1563 – 1571 .  

  51. Vourlitis , G. L. , Oechel , W. C. , Hastings , S. J. and Jenk-ins , M. A . 1993 . The effect of soil moisture and thaw depth on CH4 flux from wet coastal tundra ecosystem on the north slope of Alaska. Chemosphere 26 , 329 – 338 .  

  52. Waddington , J. M. and Roulet , N. T . 1996 . Atmosphere-wetland carbon exchanges: Scale dependency of CO, and CH4 exchange on the developmental topography of a peatland. Glob. Biogeochem. Cycles 10 , 233 – 245 .  

  53. Wagner , D. and Pfeiffer , E. M . 1997 . Two temperature optima of methane production in a typical soil of the Elbe River marshland. F EMS Microbiol. Ecol . 22 , 145 – 153 .  

  54. Whalen , S. C. and Reeburgh , W. S . 1988 . A methane flux time series for tundra environments. Glob. Biogeochem. Cycles 2 , 399 – 409 .  

  55. Whalen , S. C. and Reeburgh , W. S . 1990 . A methane flux transect along the trans-Alaska pipeline haul road. Tellus 42B , 237 – 249 .  

  56. Whalen , S. C. and Reeburgh , W. S . 1992 . Interannual variations in tundra methane emissions: a four-year time series at fixed sites. Glob. Biogeochem. Cycles 6 , 139 – 159 .  

  57. Whiting , G. J. and Chanton , J. P . 1993 . Primary produc-tion control of methane emission from wetlands. Nature 364 , 794 – 795 .  

  58. Whiting , G. J. and Chanton , J. P . 1996 . Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanisms. Aquat. Bot . 54 , 237 – 253 .  

  59. Windsor , J. , Moore , T. R. and Roulet , N. T . 1992 . Epi-sodic fluxes of methane from subarctic fens. Can. J. Soil Sci . 72 , 441 – 452 .  

  60. Yavitt , J. B. , Williams , C. J. and Wieder , R. K . 1997 . Production of methane and carbon dioxide in peatland ecosystems across North America — effects of tem-perature, aeration, and organic chemistry of peat. Geomicrobiol. J . 14 , 299 – 316 .  

  61. Zimov , S. A. , Voropaev , Y. V. , Semiletov , I. P. , Davidov , S. P. , Prosiannikov , S. F ., Chapin III, F. S. , Chapin , M. C. , Trumbore , S. and Tyler , S. 1997 . North Siberian Lakes: a methane source fueled by Pleistocene carbon. Science 277 , 800 - 802 .  

comments powered by Disqus