Start Submission Become a Reviewer

Reading: A comparison of large-scale atmospheric sulphate aerosol models (COSAM): overview and highli...

Download

A- A+
Alt. Display

Original Research Papers

A comparison of large-scale atmospheric sulphate aerosol models (COSAM): overview and highlights

Authors:

L. A. Barrie ,

Fundamental Science Division, Pacific Northwest National Laboratory, US
X close

Y. Yi,

East Giant Science and Technology Inc, CA
X close

W. R. Leaitch,

Climate and Atmospheric Science Directorate of Environment Canada, CA
X close

U. Lohmann,

Atmospheric Science Program, Physics Department, Dalhousie University, CA
X close

P. Kasibhatla,

Nicholas School of the Environment, Duke University, US
X close

G.-J. Roelofs,

(IMAU) Utrecht University, NL
X close

J. Wilson,

European Commission Environment Institute, IT
X close

F. Mcgovern,

Department Experimental Physics, University College, IE
X close

C. Benkovitz,

Environmental Science Department, Brookhaven National Laboratory, US
X close

M. A. Méliéres,

Laboratoire de Glaciologie et Geophysique de l’Environnement, FR
X close

K. Law,

Centre for Atmospheric Science, Department of Chemistry, GB
X close

J. Prospero,

University of Miami, US
X close

M. Kritz,

Atmospheric Sciences Research Center, State University of New York, US
X close

D. Bergmann,

Atmospheric Science Division, Lawrence Livermore National Laboratory, US
X close

C. Bridgeman,

Centre for Atmospheric Science, Department of Chemistry, GB
X close

M. Chin,

NASA Goddard Space Flight Center, US
X close

J. Christensen,

National Environmental Research Institute, DK
X close

R. Easter,

Fundamental Science Division, Pacific Northwest National Laboratory, US
X close

J. Feichter,

Max Planck Institute for Meteorology, DE
X close

C. Land,

Max Planck Institute for Meteorology, DE
X close

A. Jeuken,

Royal NetherlandsMeteorological Institute (KNMI), NL
X close

E. Kjellström,

Department of Meteorology, Stockholm University, SE
X close

D. Koch,

Goddard Institute for Space Studies, Department of Geology and Geophysics, US
X close

P. Rasch

National Center for Atmospheric Research (NCAR), US
X close

Abstract

The comparison of large-scale sulphate aerosol models study (COSAM) compared the performance of atmospheric models with each other and observations. It involved: (i) design of a standard model experiment for the world wide web, (ii) 10 model simulations of the cycles of sulphur and 222Rn/210Pb conforming to the experimental design, (iii) assemblage of the best available observations of atmospheric SO= 4, SO2 and MSA and (iv) a workshop in Halifax, Canada to analyze model performance and future model development needs. The analysis presented in this paper and two companion papers by Roelofs, and Lohmann and co-workers examines the variance between models and observations, discusses the sources of that variance and suggests ways to improve models. Variations between models in the export of SOx from Europe or North America are not sufficient to explain an order of magnitude variation in spatial distributions of SOx downwind in the northern hemisphere. On average, models predicted surface level seasonal mean SO= 4 aerosol mixing ratios better (most within 20%) than SO2 mixing ratios (over-prediction by factors of 2 or more). Results suggest that vertical mixing from the planetary boundary layer into the free troposphere in source regions is a major source of uncertainty in predicting the global distribution of SO= 4 aerosols in climate models today. For improvement, it is essential that globally coordinated research efforts continue to address emissions of all atmospheric species that affect the distribution and optical properties of ambient aerosols in models and that a global network of observations be established that will ultimately produce a world aerosol chemistry climatology.

How to Cite: Barrie, L.A., Yi, Y., Leaitch, W.R., Lohmann, U., Kasibhatla, P., Roelofs, G.-J., Wilson, J., Mcgovern, F., Benkovitz, C., Méliéres, M.A., Law, K., Prospero, J., Kritz, M., Bergmann, D., Bridgeman, C., Chin, M., Christensen, J., Easter, R., Feichter, J., Land, C., Jeuken, A., Kjellström, E., Koch, D. and Rasch, P., 2001. A comparison of large-scale atmospheric sulphate aerosol models (COSAM): overview and highlights. Tellus B: Chemical and Physical Meteorology, 53(5), pp.615–645. DOI: http://doi.org/10.3402/tellusb.v53i5.16642
1
Views
  Published on 01 Jan 2001
 Accepted on 2 Apr 2001            Submitted on 23 Feb 2000

REFERENCES

  1. Barrie , L. A. , Olson , M. P. and Oikawa , K. K . 1989 . The flux of anthropogenic sulphur into the Arctic from mid-latitudes . Atmos. Envir . 23 , 2502 – 2512 .  

  2. Benkowitz , C. M. , Scholtz , T. , Pacyna , J. , Tarrasón , L. , Dignon , J. , Voldner , E. , Spiro , P. A. and Graedel , T. E . 1996 . Global gridded inventories of anthropogenic emissions of sulphur and nitrogen . J. Geophys. Res. 101 , 29 , 239-29 , 253 .  

  3. Chin , M. , Rood , T. B. , Lin , S.-J. , Muller , J.-F. and Thompson , A. M . 2000 . Atmospheric sulphur cycle simulated in the global model GOCART: model description and global properties. J. Geophys. Res . 105D , 24,671 – 24,687  

  4. Christensen , J . 1997 . The Danish Eulerian hemispheric model - three dimensional air pollution model used for the arctic . Atmos. Envir . 31 , 4169 – 4191 .  

  5. Dabdub , D. and Seinfeld , J. H . 1994 . Numerical advective schemes used in air quality models - sequential and parallel implementation . Atmos. Envir . 28 , 3369 – 3385 .  

  6. Dentener , F. , Feichter , J. and Jeuken , A . 1999 . Simulation of the transport of 222Rn using on-line and off-line models at different horizontal resolutions: a detailed comparison with observations . Tellus 51B , 573 – 602 .  

  7. Erickson III, D. J. , Ghan, S. J. and Penner, J. E. 1990. Global ocean-to-atmosphere dimethyl sulfide flux. J. Geophys. Res . 95 , 7543 – 7552  

  8. Feichter , J. and Lohmann , U . 1999 . Can relaxation tech-nique be used to validate clouds and sulphur species in a GCM? Q. J. Roy. Meteorol. Soc . 125 , 1277 – 1294 .  

  9. Giannakopoulos , C . 1998 . Modelling the impact of phys-ical and removal processes on tropospheric chemistry . PhD Thesis, University of Cambridge , Cambridge , England .  

  10. Ghan , S. , Laulainen , N. , Easter , R. , Wagener , R. , Nemes-ure , S. , Chapman , E. , Zhang , Y. and Leung , R . 2001 . Evaluation of aerosol direct radiative forcing in MIRAGE . J. Geophys. Res. D106 , 5295 – 5316 .  

  11. Graf , H. , Feichter , J. and Langmann , B . 1997 . Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution. J. Geo-phys. Res . 102 , 10,727 – 10,738  

  12. Houweling , S. , Dentener , F. and Lelieveld , J . 1998 . The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res . 103 , 10,673 – 10,696  

  13. Jacob , D. J. Prather , M. J. , Rasch , P. J. , Shia , R.-L. et al. 1997 . Evaluation and intercomparison of global trans-port models using 222Rn and other short lived tracers . J. Geophys. Res . 102D , 5953 – 5970 .  

  14. Kasibhatla , P. , Chameides , W. L. and St. John , J . 1997 . A three dimensional global model investigation of seasonal variations in the atmospheric burden of atmospheric sulfate aerosols . J. Geophys. Res . 102 , 3737 – 3760 .  

  15. Kettle , A.J. et al. 1999 . A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of lati-tude, longitude, and month . Global Biogeochem. Cycles 13 , 394 – 444 .  

  16. Koch , D. M. , Jacob , D. J. , Rind , D. , Chin , M. and Tegen , I . 1999 . Tropospheric sulphur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model. J. Geo-phys. Res . 104 , 23,799 – 23,822  

  17. Kritz , M. A. , Leroulley , J.-C. and Danielsen , E. F . 1990 . The China Clipper - fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California . Tellus 42B , 46 – 61 .  

  18. Kritz , M. A. , Rosner , S. W. and Stockwell , D. Z . 1998 . Validation of an off-line three-dimensional chemical transport model using observed radon profiles: Part 1 . Observations. J. Geophys. Res . 103D , 8425 – 8432 .  

  19. Law , K. S. , Plantevin , P.-H. , Shallcross , D. E. , Rogers , H. , Grouhel , C. , Thouret , V. , Marenco , A. and Pyle , J. A . 1998 . Evaluation of modelled 03 using MOZAIC data. J. Geophys. Res . 103 , 25,721 – 25,740  

  20. Liss , P. S. and Merlivat , L . 1986 . Air-sea exchange rates: introduction and synthesis. In: The role of air-sea exchange in geochemical cycling , ed. P. Buat-Menard , pp. 113 – 127 . D. Reidel Publishing Company, Berlin, Germany.  

  21. Lohmann , U. , Von Salzen , K. , McFarlane , N. , Leighton , H. G. and Feichter , J . 1999 . The tropospheric sulfur cycle in the Canadian general circulation model. J. Geophys. Res . 104 , 26,833 – 26,858  

  22. Lohmann U. , Leaitch , R. , Law , K. , Barrie , L. , Yi , Y. , Bergman , D. , Chin , M. , Easter , R. , Feichter , J. , Jeuken , A. , Kjellstrom , E. , Koch , D. , Land , C. , Rasch , P. and Roelofs , G.-J . 2001 . Comparison of the vertical distributions of sulfur species from models participated in the COSAM exercise with observa-tions. Tellus 53B, this issue .  

  23. Penner , J. E. , Bergmann , D. , Walton , J. J. , Kinnison , D. , Prather , M. J. , Rotman , D. , Price , C. , Pickering , K. E. and Baughcum , S. L . 1998 . An evaluation of upper troposphere NOx with two models. J. Geophys. Res . 103 , 22,097 – 22,113  

  24. Preiss , N. , Melieres , M. A. and Pourchet , M . 1996 . A compilation of data on lead 210 concentration in sur-face air and fluxes at the air-surface interface and water-sediment interfaces. J. Geophys. Res . 101D , 28,847 – 28,862  

  25. Pyle , J. and Prather , M . 1996 . Global tracer transport models. In: Report of a scientific symposium , V.24. WMO/TD , Geneva , Switzerland .  

  26. Rasch , P. J. , Barth , M. C. , Kiehl , J. T. , Schwartz , S. E. and Benkovitz , C. M . 2000a . A description of the global sulphur cycle and its controlling processes in the National Center for Atmospheric Research Com-munity Climate Model, Version 3 . J. Geophys. Res . 105 , 1367 – 1385 .  

  27. Rasch , P.J. , Feichter , J. , Law , K. , Mahowald , N. , Penner , J. et al. 2000b . An assessment of scavenging and deposition processes in global models: results from the WCRP Cambridge workshop of 1995 . Tellus 52B , 1025 – 1056 .  

  28. Roelofs , G. J. , Lelieveld , J. and Ganzeveld , L . 1998 . Simu-lation of global sulphate distribution and the influence on effective cloud drop radii with a coupled photo-chemistry-sulfur cycle model . Tellus 50B , 224 – 242 .  

  29. Roelofs , G. J. , Kasibhatla , P. , Barrie , L. , Bergmann , D. , Bridgeman , C. , Chin , M. , Christensen , J. , Easter , R. , Feichter , J. , Jeuken , A. , Kjellström , E. , Koch , D. , Land , C. , Lohmann , U. and Rasch , P . 2001 . Analysis of regional budgets of sulfur species modelled for the COSAM exercise. Tellus 53B, this issue .  

  30. Sirois , A. and Barrie , L. A . 1999 . Arctic lower tropo-spheric aerosol trends and composition at Alert, Canada: 1980-1995. J. Geophys. Res . 104D , 11,599 – 11,618  

  31. Spiro , P. A. , Jacob , D. J. and Logan , J. A . 1992 . Global inventory of sulfur emissions with 10 x 1° resolution . J. Geophys. Res . 97 , 6023 – 6036 .  

  32. Staubes , R. and Georgii , H. W . 1993 . Measurements of atmospheric and sea water DMS concentrations in the Atlantic, the Arctic and Antarctic region. In: Dimethylsulphide, oceans atmosphere and climate , eds. G. Restelli and G. Angeletti. Kluwer 95-102, Academic Publishers, 399 pp.  

  33. Trenberth , K. E. , Olson , J. G. and Large , W. G . 1989 . A global ocean wind stress climatology based on ECMWF analysis . NCAR/TN-338 + STR, NCAR Technical note, August, NCAR , Boulder , CO. USA .  

comments powered by Disqus