Start Submission Become a Reviewer

Reading: The climatic significance of δ13C in subalpine spruces (Lötschental, Swiss Alps)

Download

A- A+
Alt. Display

Original Research Papers

The climatic significance of δ13C in subalpine spruces (Lötschental, Swiss Alps)

Authors:

Kerstin Treydte ,

Institute for Chemistry and Dynamics of the Geosphere, Research Centre Juelich (FZJ); Institute of Geography, Rheinische Friedrich-Wilhelms-University of Bonn, DE
X close

Gerhard H. Schleser,

Institute for Chemistry and Dynamics of the Geosphere, Research Centre Juelich (FZJ), DE
X close

Fritz H. Schweingruber,

Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), CH
X close

Matthias Winiger

Institute of Geography, Rheinische Friedrich-Wilhelms-University of Bonn, DE
X close

Abstract

Few stable carbon isotope studies exist from high mountain regions which consider both climatological and ecological influences. This study is the first presenting δ13C tree ring records from the subalpine vegetation belt of the European Alps (Lötschental, Switzerland). Pooled late wood samples from several trees (Picea abies) per site were used for studies of spatial site comparisons with respect to altitude (upper timberline/valley floor), exposure (N/S) and soil moisture (dry/moist). This investigation aims to assess how much these site conditions influence the climatic signal of δ13C. The δ13C site records (1946–1995 AD, late wood cellulose) show a decreasing long-term trend reflecting the atmospheric δ13C decrease during this period. We apply a new method for the correction of this anthropogenically induced CO2 trend which considers changes in the atmospheric δ13C source value and plant physiological reaction due to changes in the partial pressure of atmospheric CO2. The δ13C relationship to all investigated months' climatic parameters (temperature, precipitation, relative air humidity) was found to be very strong with highest correlations in July/August, the time of late wood development (maximum rT=0.74, rPPT=−0.75, rRH=−0.79). In contrast to tree ring width and density studies the observed temperature signal is not related to the altitude of the sample sites. The precipitation signal extracted from the carbon isotope time series increases with decreasing altitude and it remains strong at the upper timber line. This indicates the suitability of this isotope proxy for reconstruction of atmospheric humidity. Single extreme events (pointer years) provide stronger and more uniform reactions for dry—warm than for cool—humid summer conditions. Furthermore, the sites with moderately dry or moist soil conditions react more strongly and consistently than the extremely dry and moist sites at high elevation. Site exposure influences the absolute δ13C values (S-exposure high versus N-exposure low), but does not necessarily obscure the climatic signal of the stable isotope records.

How to Cite: Treydte, K., Schleser, G.H., Schweingruber, F.H. and Winiger, M., 2001. The climatic significance of δ13C in subalpine spruces (Lötschental, Swiss Alps). Tellus B: Chemical and Physical Meteorology, 53(5), pp.593–611. DOI: http://doi.org/10.3402/tellusb.v53i5.16639
1
Views
  Published on 01 Jan 2001
 Accepted on 1 Jun 2001            Submitted on 15 Jan 2001

REFERENCES

  1. Anderson , W. T. , Bernasconi , S. M. and McKenzie , J. A . 1998 . Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies): an example from central Switzerland (1913-1995) . J. Geo-phys. Res. 103/D 24 , 31625 – 31636 .  

  2. Baillie , M. G.L.and Pilcher , J. R . 1973 . A simple cross dating programm for tree-ring research . Tree-Ring Bull . 33 , 7 – 14 .  

  3. Becker , B. , Kromer , P. and Trimborn , P . 1991 . A stable-isotope tree-ring timescale of late Glacial/Holocene boundary . Nature 353 , 647 – 649 .  

  4. Beniston , M. , Rebetez , M. , Giorgi , F. and Marinucci , M. R . 1994 . An analysis of regional climate change in Switzerland. Theor. Appl. Climatol . 49 , 135 – 159 .  

  5. Borella , S. , Leuenberger , M. , Saurer , M. and Siegwol! , R. 1998. Reducing uncertainties in 6'3C analysis of tree rings: Pooling, milling, and cellulose extraction. J. Geophys. Res. 103, 19 519-19 526.  

  6. Cook , E. R. and Kairiukstis , L. A. (eds) 1990 . Methods in dendrochronology . Dordrecht .  

  7. Craig , H . 1957 . Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide . Geochim. Cosmochim. Acta 12 , 133 – 149 .  

  8. Cropper , R . 1979 . Tree-ring skeleton plotting by com-puter . Tree Ring Bull . 39 , 47 – 59 .  

  9. Edwards , T. W.D. ., Graf, W., Trimborn, P., Stichler, W., Lipp, J. and Payer, H. D. 2000. S“C response surface resolves humidity and temperature signals in trees. Geochim. Cosmochim. Acta 64 , 161 – 167  

  10. Ellenberg , H . 1996 . Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht . Ulmer Verlag , Stuttgart .  

  11. Esper , J . 2000 . Long term tree-ring variations in Junipers at the upper timberline in the Karakorum (Pakistan) . Holocene 10 , 253 – 260 .  

  12. Esper , J. , Schweingruber , F. H. and Winiger , M . 2001 . 1300 Years of climate history for Western Central Asia inferred from tree rings . Holocene ( accepted) .  

  13. Farquhar , G. D. , O'Leary , M. H. and Berry , J. A. 1982. On the relationship between carbon isotope discrim-ination and the intercellular carbon dioxide concentra-tion in leaves. Austr. J. Plant Physiol . 9 , 121 – 137 .  

  14. Feng , X. H. and Epstein , S. 1995. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration . Geo-chim. Cosmochim. Acta 59 , 2599 – 2609 .  

  15. Feng , X. H . 1999 . Trends in intrinsic water use efficiency of natural trees for the past 100-200 years: A response to atmospheric CO2 concentration . Geochim. Cosmo-chim. Acta 63 , 1891 – 1903 .  

  16. Francey , R. J . 1981 . Tasmanian tree rings belie suggested anthropogenic “C/12C trends . Nature 290, 232 – 235 .  

  17. Francey , R. J. , Tans , P. , Allison , C. E. , Enting , I. G. , White , J. WI . and Trolier , M. 1995. Changes in oceanic and terrestrial carbon dioxide since 1982 . Nature 373 , 326 – 330 .  

  18. Freyer , H. D. and Belacy , N . 1983 . “C“C records in Northern hemispheric trees during the past 500 years - anthropogenic impact and climate superpositions . J. Geophys. Res . 88 , 6844 – 6852 .  

  19. Friedli, H. , Loetscher, H. , Oeschger, H. , Siegenthaler, U. and Stauffer, B. 1986. Ice core record of the “C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324 , 237 – 238  

  20. Fritts , H. C . 1976 . Tree rings and climate . Academic Press , London .  

  21. Hughes , M. K. , Kelly , P. M. , Pilcher , J. R. and LaMarche , V. C. (eds) ( 1982 ). Climate from tree rings . Cambridge University Press .  

  22. Htisken , W . 1994 . Dendrochronologische und ökologis-che Studien an Nadelhölzern im Gebiet der Pragser Dolomiten (Stidtirol/Italien) Dissertationes Botanicae 215, Berlin .  

  23. Keeling , C.D. ., Mook, W. G. and Tans, P. P. 1979. Recent trends in the “C/12C ratio of atmospheric carbon dioxide. Nature 277 , 121 – 123  

  24. Keeling , C.D. ., Bascatow, R. and Tans, P. P. 1980. Pre-dicted shift in the “C/12C ratio of atmospheric carbon dioxide. Geophys. Res. Lett . 7 , 505 – 508  

  25. Keeling , C. D. and Whorf , T. P . 1999 . Atmospheric CO2 records from sites in the SIO air sampling network . In: Trends: a compendium of data on global change. Carbon dioxide Information Analysis Centre, Oak Ridge National Laboratory. Oak Ridge, Tenn., USA.  

  26. Kitagawa , H. and Matsumkoto , M. 1993. Carbon iso-tope variation within trunks of Japanese cedars from Yakushima Island, Southern Japan . Geochem. J . 29 , 149 – 153 .  

  27. Körner , C. , Farquhar , G. D. and Wong , S. C . 1991 . Carbon isotope discrimination by plants follows latit-udinal and altitudinal trends. Oecologia 88 , 30 - 40 .  

  28. LaMarche , V. C . 1974 . Paleoclimatic inferences from long tree ring records . Science 183, 1043 – 1048 .  

  29. Leavitt , S. W. and Long , A. 1984. Sampling strategy for stable isotope analysis of tree rings in Pine . Nature 311 , 145 – 147 .  

  30. Leavitt , S. W. and Lara , A . 1994 . South American tree rings show declining PC trend. Tellus 46B , 152 – 157 .  

  31. Leavitt , S. W. and Long , A. 1989. Drought indicated in carbon-13/carbon-12 ratios of Southwestern tree rings . Water Res. Bull . 25 , 341 – 347 .  

  32. Leavitt , S. W. , Liu , Y. , Hughes , M. K. , Liu, R., An, Z., Gutierrez, G. M., Danzer, S. R. and Shao, X. 1995. A single-year PC chronology from Pinus tabulaeformis (Chinese Pine) tree rings at Huangling, China. Radiocarbon 37 , 605 – 610  

  33. Lipp , J. , Trimborn , P. , Fritz , P. , Moser , H. , Becker , B. and Frenzel , B . 1991 . Stable isotopes in tree-ring cellu-lose and climatic change . Tellus 43B , 322 – 330 .  

  34. Liu , Y. , Wu , X. , Leavitt , S. W. and Hughes , M. K . 1996 . Stable carbon isotopes in tree rings from Huangling, China and climate variation . Science in China D39 , 152 – 161 .  

  35. Meyer , F. D . 2000 . Rekonstruktion der Klima-Wachs-tumsbeziehungen und der Waldentwicklung im subal-pinen Waldgrenzökoton bei Grindelwald , Schweiz. PhD Thesis , University of Basel , Switzerland .  

  36. Muller , H. N . 1981 . Messungen zur Beziehung Klimafak-toren - Jahrringwachstum von Nadelbaumarten ves-chiedener waldgrenznaher Standorte . Mitt. Forstl. Bundesversuchsanst . 142 , 327 – 35 .  

  37. Neuwirth , B . 1998 . Dendroklimatologische Untersu-chungen im Lötschental/Schweiz - Visuelle Jahrring-parameter subalpiner Fichten in Abhängigkeit von Höhenlage, Exposition und Standortverhaltnissen . Diploma Thesis, Geographical Institute, University of Bonn , Germany .  

  38. Ott , E . 1978 . Ober die Abhängigkeit des Radial-zuwachses und der Oberhöhen bei Fichte und Larche von der Meereshöhe und Exposition im Lötschental . Schweiz. Zeitschr. Forstw . 129 , 169 – 193 .  

  39. Robertson, I. , Switsur, V. R. , Carter, A. H.C. , Barker, A. C. , Waterhouse, J. S. , Briffa, K. R. and Jones, P. D. 1997. Signal strength and climate relationships in “C/ “C ratios of tree ring cellulose from oak in east England. J. Geophys. Res . 102 (D16) , 19507 – 19516  

  40. Saurer , M. , Siegenthaler , U. and Schweingruber , F. H . 1995 . The climate—carbon isotope relationship in tree rings and the significance of site conditions . Tellus 47 , 320 – 330 .  

  41. Saurer , M. , Borella , S. , Schweingruber , F. and Siegwolf , R . 1997 . Stable carbon isotopes in tree rings of beech: climatic versus site-related influences . Tellus 49B , 80 – 92 .  

  42. Schleser , G. H. and Jayasekera , R . 1985 . S“C variations of leaves in forest as an indication of reassimilated CO2 from the soil . Oecologia 65 , 536 – 542 .  

  43. Schleser , G. H. , Helle , G. , Luecke , A. and Vos , H . 1999 . Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quatern . Sci. Rev . 18 , 972 – 943 .  

  44. Schleser , G. H . 1995 . Parameters determining carbon isotope ratios in plants . Paldoklimaforschung/Paleo-dim. Res . 15 , 71 – 96 .  

  45. Schleser , G. H . 1999 . “C/12C in growth rings and leaves: carbon distribution in trees . In: Jones TP , Rowe NP ( eds). Fossil plants and spores: modern techniques . Geo-logical Society , London , 306 – 309 .  

  46. Schweingruber , F. H . 1988 . Tree rings. Basics and applications of dendrochronology . Dordrecht .  

  47. Schweingruber , F. H . 1996 . Tree rings and environment . Dendroecology .  

  48. Schweingruber , F. H. , Eckstein , D. , Serre-Bachet , F. and Braeker, 0. U. 1990. Identification, presentation and interpretation of event years and pointer years in den-drochronology. Dendrochronologia 8 , 9 – 38 .  

  49. Sohn , A. W. and Reiff , F . 1942 . Natriumchlorit als AufschluBmittel . Der Papierfabrikant 2 , 5 – 7 .  

  50. Stuiver , M . 1978 . Atmospheric carbon dioxide and carbon reservoir changes . Science 199 , 253 – 258 .  

  51. Tans , P. and Mook , W. G . 1980 . Past atmospheric CO2 levels and the “C/12C ratios in tree rings . Tellus 32 , 268 – 283 .  

  52. Treydte , K . 1998 . Dendroklimatologische Untersu-chungen im Lötschental/Schweiz — S“C subalpiner Fichten in Abhängigkeit von Höhenlage, Exposition und Standortverhältnissen. Diploma Thesis, Geo-graphical Institute, University of Bonn, Germany. Wiesberg, L. 1974. Die “C-Abnahme in Holz von Baumjahresringen. Eine Untersuchung zur anthropog-enen Beeinflussung des CO2-Haushaltes der Atmos-phäre. In: Theseis, Rheinisch Westfälische Technische Hochschule Aachen, 1 – 117 .  

  53. Zimmermann , B . 1998 . S“C in 1600-jaehriger Wac-holder-Chronologie Tibets — klimatische und anthro-pogene Einfltisse . Dissertation, Geological Institue , University of Cologne , Germany .  

comments powered by Disqus