Start Submission Become a Reviewer

Reading: Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration

Download

A- A+
Alt. Display

Original Research Papers

Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration

Authors:

Gary J. Whiting ,

Department of Biology, Chemistry, and Environmental Science, Christopher Newport University, US
X close

Jeffrey P. Chanton

Department of Oceanography, Florida State University, US
X close

Abstract

Carbon fixation under wetland anaerobic soil conditions provides unique conditions for long-term storage of carbon into histosols. However, this carbon sequestration process is intimately linked to methane emission from wetlands. The potential contribution of this emitted methane to the greenhouse effect can be mitigated by the removal of atmospheric CO2 and storage into peat. The balance of CH4 and CO2 exchange can provide an index of a wetland’s greenhouse gas (carbon) contribution to the atmosphere. Here, we relate the atmospheric global warming potential of methane (GWPM) with annual methane emission/carbon dioxide exchange ratio of wetlands ranging from the boreal zone to the near-subtropics. This relationship permits one to determine the greenhouse carbon balance of wetlands by their contribution to or attenuation of the greenhouse effect via CH4 emission or CO2 sink, respectively. We report annual measurements of the relationship between methane emission and net carbon fixation in three wetland ecosystems. The ratio of methane released to annual net carbon fixed varies from 0.05 to 0.20 on a molar basis. Although these wetlands function as a sink for CO2, the 21.8-fold greater infrared absorptivity of CH4 relative to CO2(GWPM) over a relatively short time horizon (20 years) would indicate that the release of methane still contributes to the overall greenhouse effect. As GWPM decreases over longer time horizons (100 years), our analyses suggest that the subtropical and temperate wetlands attenuate global warming, and northern wetlands may be perched on the “greenhouse compensation” point. Considering a 500-year time horizon, these wetlands can be regarded as sinks for greenhouse gas warming potential, and thus attenuate the greenhouse warming of the atmosphere.

How to Cite: Whiting, G.J. and Chanton, J.P., 2001. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B: Chemical and Physical Meteorology, 53(5), pp.521–528. DOI: http://doi.org/10.3402/tellusb.v53i5.16628
5
Views
  Published on 01 Jan 2001
 Accepted on 18 Apr 2001            Submitted on 1 Aug 2000

REFERENCES

  1. Aselmann , I. and Crutzen , P. J . 1989 . Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions . J. Atmos. Chem . 8 , 307 – 358 .  

  2. Billings , W. D. , Luken , J.O. ., Mortensen, D. A. and Peterson, K. M. 1983. Increasing atmospheric carbon dioxide: possible effects on arctic tundra. Oecologia 53 , 7 – 11  

  3. Bolin , B. , Degens , E. T. , Duvigneaud , P. and Kempe , S . 1977 . The global biogeochemical carbon cycle. In: Global carbon cycle , Scope 13 (eds. Bolin, B. , Degens, E. , Kempe, S. and Ketner, P. ). Wiley, New York, pp. 1 – 53 .  

  4. Brook , E. J. , Sowers , T. and Orchardo , J . 1996 . Rapid variations in atmospheric methane concentration during the past 110,000 years . Science 273 , 1087 – 1091 .  

  5. Brook , E. J. , Harder , S. , Severinghaus , J. , Steig , E. J. and Sucher , C. M . 2000 . On the origin and timing of rapid changes in atmospheric methane during the last glacial period . Global Biogeochem. Cycles 14 , 559 – 572 .  

  6. Bubier J. L. , Moore , T. R. and Roulet N. T . 1993 . Meth-ane emissions from wetlands in the midboreal region of northern Ontario, Canada . Ecology 74 , 2240 – 2254 .  

  7. Buringh , P . 1984 . Organic carbon in soils of the world. In: The role of terrestrial vegetation in the global carbon cycle , SCOPE 23 (ed. G. M. Woodwell . Wiley, New York, pp. 91 – 110 .  

  8. Chanton , J. P. and Dacey , J. W. H . 1991 . Effects of vegetation on methane flux, reservoirs and carbon isotopic composition. In: Trace gas emissions from plants (eds. Mooney, H. , Holland, E. and Sharkey, T. ). Academic Press, London, pp. 65 – 92 .  

  9. Chanton , J. P. and Whiting , G. J . 1995 . Trace gas exchange in freshwater and coastal marine systems: ebullition and plant transport. In: Methods in ecology: biogenic trace gases: measuring emissions from soil and water (eds. Matson, P. and Harriss, R. ). Blackwell Scientific, Oxford, pp. 98 – 125 .  

  10. Chanton , J. P. , Whiting , G. , Happell , J. and Gerard , G . 1993 . Contrasting rates and diurnal patterns of meth-ane emission from different types of vegetation . Aquat. Bot . 46 , 111 – 128 .  

  11. Chanton , J. et al. 1995 . Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands . Geochim. Cosmochim. Acta 59 , 3663 – 3668 .  

  12. Chappellaz , J. , Barnola , J. M. , Raynaud, D., Korot-kevich, Y. S. and Lorius, C. 1990. Ice-core record of atmospheric methane over the past 160,000 years. Nature 345 , 127 – 131  

  13. Chappellaz , J. , Fung , I. Y. and Thompson , A. M . 1993 . The atmospheric CH, increase since the Last Glacial Maximum (1). Source estimates . Tellus 45B , 228 – 241 .  

  14. Crocker , R. L. and Major , J . 1955 . Soil development in relation to vegetation and surface age at Glacier Bay, Alaska . J. Ecology 43 , 427 – 448 .  

  15. Curtis , P. S. , Drake , B. G. , Leadley , P. W. , Arp , W. J. and Whigham , D. F . 1989 . Growth and senescence in plant communities exposed to elevated CO2 concen-trations on an estuarine marsh . Oecologia 78 , 20 – 26 .  

  16. Dacey , J. , Drake , B. G. and Klug , M . 1994 . Stimulation of methane emission by CO2 enrichment of marsh vegetation . Nature 370 , 47 – 48 .  

  17. Gorham , E . 1991 . Northern peatlands: role in the carbon cycle and probable responses to climatic warming . Ecological Applications 1 , 182 – 195 .  

  18. Hutchin , P. R. , Press , M. C. , Lee , J. A. and Ashenden , T . 1995 . Elevated concentrations of CO2 may double methane emissions from mires . Global Change Biol . 1 , 125 – 128 .  

  19. IPCC. 1996. In: Climate change 1995. The science of climate change . Cambridge University Press, Cam-bridge. 572 pp.  

  20. Klinger , L. F. , Zimmerman , P. , Greenberg , J. P. , Heidt , L. E. and Guenther , A. B . 1994 . Carbon trace gas fluxes along a successional gradient in the Hudson Bay lowland . J. Geophys. Res . 99 , 1469 – 1494 .  

  21. Kusler , J. A. and Kentula , M. E . 1993 . In: Wetland cre-ation and restoration, the status of the science . Island Press , Washington , DC. 591 pp .  

  22. Lashof , D. A. and Ahuja , D. R . 1990 . Relative contribu-tions of greenhouse gas emissions to global warming . Nature 344 , 529 – 531 .  

  23. Lelieveld , J. , Crutzen , P. J. and Bruhl , C . 1993 . Climatic effects of atmospheric methane . Chemosphere 26 , 739 – 768 .  

  24. Lelieveld , J. , Crutzen , P. J. and Dentener , F. J . 1998 . Changing concentration, lifetime and climate forcing of atmospheric methane . Tellus 50B, 128 – 150 .  

  25. Matthews , E. and Fung , I. Y. 1987. Methane emissions from natural wetlands: global distribution, area, and environmental characteristics of sources . Global Biogeochem. Cycles 1 , 61 – 86 .  

  26. Mitsch , W. J. and Gosselink , J. G . 1993 . In: Wetlands . Van Nostrand Reinhold, New York. 722 pp.  

  27. Moore , T. R. , Roulet , N. and Knowles , R . 1990 . Spatial and temporal variations of methane flux from subarc-tic/northern boreal fens . Global Biogeochem. Cycles 4 , 29 – 46 .  

  28. Odum , E. P . 1969 . The strategy of ecosystem develop-ment . Science 164 , 262 – 270 .  

  29. Olson , J. S . 1958 . Rates of succession and soil changes on southern Lake Michigan sand dunes . Botanical Gazette 119 , 125 – 170 .  

  30. Petit , J. R. et al. 1999 . Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica . Nature 399 , 429 – 436 .  

  31. Post , W. M. , Emanuel , W. R. , Zinke , P. J. and Stangen-berger , A. G . 1982 . Soil carbon pools and world life zones . Nature 298 , 156 – 159 .  

  32. Reddy , K. R. , DeLaune , R. , DeBusk , W. and Koch , M . 1993 . Long term nutrient accumulation rates in the Everglades . Soil Sci. Soc. Am. J . 57 , 1147 – 1155 .  

  33. Rodhe , H . 1990 . A comparison of the contribution of various gases to the greenhouse effect . Science 248 , 1217 – 1219 .  

  34. Rodhe , H. , Eriksson , H. , Robertson , K. and Svensson , B. H . 1991 . Sources and sinks of greenhouse gases in Sweden: a case study . Ambio 20 , 143 – 145 .  

  35. Rodhe , H. and Svensson , B . 1995 . Impact on the green-house effect of peat mining and combustion . Ambio 24 , 221 – 225 .  

  36. Rogers , J. D. and Stephens , R. D . 1988 . Absolute infrared intensities for F-113 and F-114 and an assessment of their greenhouse warming potential relative to other chlorofluorocarbons . J. Geophys. Res . 93 , 2423 – 2428 .  

  37. Romanowicz , E. A. , Siegel , D. I. , Chanton , J. P. and Glaser , P. H . 1995 . Temporal variations in dissolved methane deep in the Lake Agassiz Peatlands, Minne-sota . Global Biogeochem. Cycles 9 , 197 – 212 .  

  38. Roulet N. T. , Ash , R. , Quinton , W. and Moore , T . 1993 . Methane flux from drained northern peatlands: effect of a persistent water table lowering on flux . Global Biogeochem. Cycles 7 , 749 – 769 .  

  39. Rudd , J. M. , Harris , R. , Kelly , C. A. and Hecky , R. E . 1993 . Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio 22 , 246 – 248 .  

  40. Schlesinger , W. H . 1991 . In: Biogeochemistry, an analysis of global change . Academic Press , New York , 443 pp .  

  41. Schlesinger , W. H . 1984 . Soil organic mater: a source of atmospheric CO,. In: The role of terrestrial vegetation in the global carbon cycle: measurement by remote sensing (ed. Woodwell G. M. ). Wiley, New York, pp. 111 – 127 .  

  42. Whiting , G. J. and Chanton , J. P . 1992 . Plant-dependent CH4 emissions in a subarctic Canadian fen . Global Biogeochem. Cycles 6 , 225 – 231 .  

  43. Whiting , G. J. and Chanton , J. P . 1993 . Primary produc-tion control of methane emissions from wetlands . Nature 364 , 794 – 795 .  

  44. Whiting , G. J. , Chanton , J. P. , Bartlett , D. and Happell , J . 1991a . Relationships between CH4 emissions, biomass, and net primary productivity in a sub-tropical grass-land . J. Geophys. Res . 96 , 13,067 – 13,071 .  

  45. Whiting , G. J. , Bartlett , D. S. , Fan. S. , Bakwin , P. S. and Wofsy , S. C . 1991b . Biosphere/atmosphere CO, exchange in tundra ecosystems: community character-istics and relationships with multispectral surface reflectance . J. Geophys. Res . 97 , 16,671 – 16,680 .  

comments powered by Disqus