Start Submission Become a Reviewer

Reading: Future changes of the atmospheric composition and the impact of climate change

Download

A- A+
Alt. Display

Original Research Papers

Future changes of the atmospheric composition and the impact of climate change

Authors:

Volker Grewe ,

DLR Institut für Physik der Atmosphäre, DE; NASA-Goddard Institute of Space Studies/Columbia University, US
X close

Martin Dameris,

DLR Institut für Physik der Atmosphäre, DE
X close

Ralf Hein,

DLR Institut für Physik der Atmosphäre, DE
X close

Robert Sausen,

DLR Institut für Physik der Atmosphäre, DE
X close

Benedikt Steil

Max-Planck-Institute for Chemistry; Now at Max-Planck-Institute for Meteorology, DE
X close

Abstract

The development of the future atmospheric chemical composition is investigated with respect to NOy and O3 by means of the off-line coupled dynamic-chemical general circulation model ECHAM3/CHEM. Two time slice experiments have been performed for the years 1992 and 2015, which include changes in sea surface temperatures, greenhouse gas concentrations, emissions of CFCs, NOx and other species, i.e., the 2015 simulation accounts for changes in chemically relevant emissions and for a climate change and its impact on air chemistry. The 2015 simulation clearly shows a global increase in ozone except for large areas of the lower stratosphere, where no significant changes or even decreases in the ozone concentration are found. For a better understanding of the importance of (A) emissions like NOx and CFCs, (B) future changes of air temperature and water vapour concentration, and (C) other dynamical parameters, like precipitation and changes in the circulation, diabatic circulation, stratosphere-troposphere-exchange, the simulation of the future atmosphere has been performed stepwise. This method requires a climate-chemistry model without interactive coupling of chemical species. Model results show that the direct effect of emissions (A) plays a major rôle for the composition of the future atmosphere, but they also clearly show that climate change (B and C) has a significant impact and strongly reduces the NOy and ozone concentration in the lower stratosphere.

How to Cite: Grewe, V., Dameris, M., Hein, R., Sausen, R. and Steil, B., 2001. Future changes of the atmospheric composition and the impact of climate change. Tellus B: Chemical and Physical Meteorology, 53(2), pp.103–121. DOI: http://doi.org/10.3402/tellusb.v53i2.16551
  Published on 01 Jan 2001
 Accepted on 11 Nov 2000            Submitted on 29 Feb 2000

REFERENCES

  1. Bojkov , R. D. and Fioletov , V. E . 1995 . Estimating the global ozone characteristics during the last 30 years . J. Geophys. Res. 100 , 16 , 537-16 , 551 .  

  2. Brasseur , G. , Hitchman , M. H. , Walters , S. , Dymek , M. , Falise , E. and Pirre , M . 1990 . An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere . J. Geophys. Res . 95 , 5639 – 5655 .  

  3. Brasseur , G. P. , Kiehl , J. T. , Muller , J.-F. , Schneider , T. , Granier , C. , Tie , X. X. and Hauglustaine , D . 1998 . Past and future changes in global tropospheric ozone: Impact on radiative forcing . Geophys. Res. Lett . 25 , 3807 – 3810 .  

  4. Brunner , D . 1998 . One-year climatology of nitrogen oxides and ozone in the tropopause region. Results from B-747 aircraft measurements . PhD thesis, 181 pp., Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.  

  5. Crutzen , P. J . 1995 . An overview of atmospheric chem-istry. In: Topics in atmospheric and interstellar chem-istry . European Research Course on Atmospheres, ERCA Vol. 1 , eds. C. Boutron , 63-88, Les Ulis, France.  

  6. Crutzen , P. J. and Zimmermann , P. H . 1991 . The changing photochemistry of the troposphere. Tellus 43A/B, 136 – 151 .  

  7. Dameris , M. , Grewe , V. , Hein , R. and Schnadt , C . 1998a . Assessment of the future development of the ozone layer . Geophys. Res. Lett . 25 , 3579 – 3582 .  

  8. Dameris , M. , Grewe , V. , Kohler, I., Sausen, R., Bri. 1111, C., GrooB, J.-U. and Steil, B. 1998b. Impact of aircraft NO-emissions on tropospheric and stratospheric ozone. Part II: 3-D model results. Atmos. Environ . 32 , 3185 – 3200  

  9. Dentener , F. J. and Crutzen , P. J . 1993 . Reaction of N205 on tropospheric aerosols: Impact on global distributions of NO„ 03, and OH . J. Geophys. Res . 98 , 7149 – 7163 .  

  10. Emmons , L. K. , Carroll , M. A. , Hauglustaine , D. A. , Brasseur , G. P. , Atherton , C. , Penner , J. , Sillman , S ., Levy IL, H., Rohrer, F., Wauben, W. M. F., van Velt-hoven, P. F. J., Wang, Y., Jacob, D., Bakwin, P., Dickerson, R., Doddridge, B., Gerbig, C., Honrath, R., HiIbler, G., Jaffe, D., Kondo, Y., Munger, J. W., Torres, A. and Volz-Thomas, A. 1997. Climatologies of NO and NOR: Comparison of data and models . Atmos. Environ . 31 , 1851– 1904 .  

  11. Fishman , J. and Crutzen , P. J . 1978 . The origin of ozone in the troposphere . Nature 274 , 853 – 858 .  

  12. Fishman J. , Ramanathan , V. , Crutzen , P. J. and Liu , S. C . 1979 . Tropospheric ozone and climate . Nature 282 , 818 – 820 .  

  13. Fuglestvedt , J. S. , Berntsen , T. K. , Isaksen , I. S. A. , Mao , H. , Liang , X.-Z. and Wang , W.-C . 1999 . Climatic forcing of nitrogen oxides through changes in tropo-spheric ozone and methane; global 3D model studies . Atmos. Environ . 33 , 961 – 977 .  

  14. Gates , W. L . 1992 . AMIP: The atmosphere model inter-comparison project . Bull. Amer. Meteor. Soc . 73 , 1962 – 1970 .  

  15. Grewe , V. and Dameris , M . 1996 . Calculating the global mass exchange between stratosphere and troposphere . Ann. Geophys . 14 , 431 – 442 .  

  16. Grewe , V. and Dameris , M . 1997 . Heterogeneous PSC ozone loss during an ozone mini-hole . Geophys. Res. Lett . 24 , 2503 – 2506 .  

  17. Grewe , V. , Dameris , M. , Sausen , R. and Steil , B . 1998 . Impact of stratospheric dynamics and chemistry on northern midlatitude ozone loss. J. Geophys. Res . 103 , 25,417 – 25,433  

  18. Grewe , V. , Dameris , M. , Hein , R. , Kohler , I. and Sausen , R . 1999a . Impact of future subsonic NOx emis-sions on the atmospheric composition . Geophys. Res. Lett . 26 , 47 – 50 .  

  19. Grewe , V. , Rogers , H. , Pyle , J. and Sausen , R . 1999b . Stratosphere—Troposphere-Exchange. In: AEROCHEM Final Report , ed. I. Isaksen, ENV4-CT95-0144EUR, Luxemburg, 44 – 49 .  

  20. GrooB , J.-U. , Brühl , C. and Peter , T . 1998 . Impact of aircraft NON-emissions on tropospheric and strato-spheric ozone. Part I: Chemistry and 2-D model results . Atmos. Environ . 32 , 3173 – 3184 .  

  21. Hanson , D. and Mauersberger , K . 1988 . Laboratory studies of nitric acid trihydrate: Implications for the south polar stratosphere . Geophys. Res. Lett . 15 , 855 – 858 .  

  22. Hansen , J. , et al. 1997. Forcings and chaos in interannual to decadal climate change. J. Geophys. Res . 102 , 25,679 – 25,720  

  23. Hough , A. M. and Derwent , R. G . 1990 . Changes in global concentration of tropospheric ozone due to human activities . Nature 344 , 645 – 648 .  

  24. Houweling , S . 1999 . Global modeling of atmospheric meth-ane sources and sinks . PhD thesis , University of Utrecht , Netherlands , 171 pp .  

  25. IPCC (Intergovernmental Panel on Climate Change) . 1996 . Climate change 1995 , eds. J. T. Houghton , L. G. Meira Filho , B. A. Callander , N. Harris , A. Kattenberg and K. Maskell , Cambridge University Press , New York .  

  26. IPCC (Intergovernmental Panel on Climate Change) . 1999 . Special report on aviation and the global atmo-sphere , ed. J. T. Houghton , Cambridge University Press , New York .  

  27. Jacob , D. J. , Heikes , B. G. , Fan. S.-M. , Logan , J. A. , Mauzerall , D. L. , Bradshaw , J.D. ., Singh, H. B., Gregory, G. L., Talbot, R. W., Blake, D. R. and Sachse, G. W. 1996. Origin of ozone and NO in the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic basin. J. Geophys. Res . 101 , 24,235 – 24,250  

  28. Johnson , C. E. , Collins , W. J. , Stevenson , D. S. and Derwent , R. G . 1999 . The relative roles of climate and emission changes on future tropospheric oxidant concentrations. J. Geophys. Res . 104 , 18,631 – 18,645  

  29. Kattenberg , A. , Giorgi , F. , Grassl , H. , Mehl , G. A. , Mit-chell , J. F. B. , Stouffer , R. J. , Tokioka , T. , Weaver , A. J. and Wigley , T. M. L . 1996 . Climate models — Projec-tions of future climate. In: Intergovernmental Panel on climate change (IPCC), Climate change 1995, eds. J. T. Houghton , L. G. Meira Filho , B. A. Callander , N. Harris , A. Kattenberg and K. Maskell , Cambridge University Press, New York, 285 – 358 .  

  30. Kohler, I. , Sausen, R. , Grewe, V. and Ziereis, H. 1998. Intercomparison of global model simulations and air-craft measurements in the NAFC. In: Pollution from aircraft emissions in the North Atlantic flight corridor (POLIN AT 2), ed. U. Schumann, EUR 18877 EN, Luxemburg, 217 – 232 .  

  31. Lee , D. S. , Kohler, I., Grobler, E., Rohrer, F., Sausen, R., Gallardo-Klenner, L., Olivier, J. J. G., Dentener, F. J. and Bouwman, A. F. 1997. Estimations of global NOx emissions and their uncertainties . Atmos. Environ . 31 , 1735– 1749 .  

  32. Leggett , J. , Pepper , W. J. and Swart , R. J . 1992 . Emissions scenarios for the IPCC: an update. In: Climate change 1992. The supplementary report to the IPCC scientific assessment, eds. J. T. Houghton et al., Cambridge University Press, Cambridge, U.K., 69 – 95 .  

  33. Lin , X. , Trainer , M. and Liu , S. C . 1988 . On the nonlinearity of the tropospheric ozone production. J. Geophys. Res . 93 , 15,879 – 15,888  

  34. Manabe , S. , Stouffer , R. J. , Spelman , M. J. and Byan , K . 1991 . Transient responses of a coupled ocean—atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean responses . J. Climate 4 , 785 – 818 .  

  35. Manabe , S. , Spelman , M. J. and Stouffer , R. J . 1992 . Transient responses of a coupled ocean—atmosphere model to gradual changes of atmospheric CO2. Part II: Seasonal response . J. Climate 5 , 105 – 126 .  

  36. Mitchell , J. F. B. , Johns , T. C. and Senior , C. A . 1998 . Transient response to increasing greenhouse gases using models with and without flux adjustment . Hadley Centre for Climate Prediction and Research, Technical Note 2, 26 pp , Bracknell , United Kingdom .  

  37. Ramanathan , V. , Callis , L. , Cess , R. , Hansen , J. , Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahl-man, J., Reck, R. and Schlesinger, M. 1987. Climate-chemistry interactions and the effects of changing atmospheric trace gases. Rev. Geophys . 25 , 1441 – 1482  

  38. Rasch , P. J. and Williamson , D. L . 1990 . Computational aspects of moisture transport in global models of the atmosphere . Q. J. Roy. Meteorol. Soc . 116 , 1071 – 1090 .  

  39. Roeckner , E. , Arpe , K. , Bengtsson , L. , Brinkop , S. , Diimenil , L. , Esch , M. , Kirk , E. , Lunkeit , F. , Ponater , M. , Rockel , B. , Sausen , R. , Schlese , U. , Schubert , S. and Windelband , M . 1992 . Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. Rep. 93 , Max-Planck-Inst. fur Meteorol ., Hamburg , Germany .  

  40. Roeckner , E. , Bengtsson , L. , Feichter , J. , Lelieveld , J. and Rodhe , H . 1999 . Transient climate change simulations with a coupled atmosphere—ocean GCM including the tropospheric sulfur cycle . J. Climate 12 , 3004 – 3042 .  

  41. Roelofs , G.-J. and Lelieveld , J . 1995 . Distribution and budget of 03 in the troposphere calculated with a chemistry general circulation model. J. Geophys. Res . 100 , 20,983 – 20,998  

  42. Roelofs , G.-J. , Lelieveld , J. and Feichter , J . 1999 . Model simulations of the changing distribution of ozone and its radiative forcing of climate: past, present, and future. Rep. 283, Max-Planck-Inst. fur Meteorol., Hamburg, Germany.  

  43. Shindell , D. T. , Rind , D. and Lonergan , P . 1998a . Climate change and the middle atmosphere. Part IV: Ozone response to doubled CO ,. J. Climate 11 , 895 – 918 .  

  44. Shindell , D. T. , Rind , D. and Lonergan , P . 1998b . Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations . Nature 392 , 589 – 592 .  

  45. Steil , B . 1999 . Modellierung der Chemie der globalen Strato- und Troposphtire mit einem drei-dimensionalen Zirkulationsmodell. PhD thesis, 205 pp., Max-Planck-Inst. fur Meteorol., Examensarbeit Nr. 62, Fachbereich Geowissenschaften, Univ. Hamburg, Hamburg, Germany .  

  46. Steil , B. , Dameris , M. , Brühl , C. , Crutzen , P. J. , Grewe , V. , Ponater , M. and Sausen , R . 1998 . Development of a chemistry module for GCMs: First results of a multi-annual integration . Ann. Geophys . 16 , 205 – 228 .  

  47. Stevenson , D. S. , Johnson , C. E. , Collins , W. J. , Derwent , R. G. , Shine , K. P. and Edwards , J. M . 1998 . Evolution of tropospheric ozone radiative forcing . Geophys. Res. Lett . 25 , 3819 – 3822 .  

  48. Tiedtke , M . 1989 . A comprehensive mass flux scheme for cumulus parameterization in large-scale models . Mon. Wea. Rev . 117 , 1779 – 1800 .  

  49. Toumi , R. , Haigh , J. D. and Law , K. S . 1996 . A tropo-spheric ozone-lightning climate feedback . Geophys. Res. Lett . 23 , 1037 – 1040 .  

  50. Wang , C. and Prinn , R. G . 1997 . Interactions among emissions, atmospheric chemistry, and climate change: Implications for future trends. MIT Joint program on the science and policy of global change , 25 .  

  51. Wang , C. and Prinn , R. G . 1999 . Impact of emissions, chemistry, and climate on atmospheric carbon monox-ide: 100-year predictions from a global chemistry-climate model . Chemosphere Global Change Science 1 , 77 – 81 .  

  52. WMO (World Meteorological Organization) . 1992. Scientific assessment of ozone depletion: 1991 . WMO Rep. 25, Geneva, Switzerland .  

  53. Wuebbles , D. J . 1996 . Three-dimensional chemistry in the greenhouse . Climatic Change 34 , 397 – 404 .  

comments powered by Disqus