Start Submission Become a Reviewer

Reading: Broadband extinction method to determine atmospheric aerosol optical properties

Download

A- A+
Alt. Display

Original Research Papers

Broadband extinction method to determine atmospheric aerosol optical properties

Author:

Jinhuan Qiu

Institute of Atmospheric Physics, Chinese Academy of Sciences, CN
X close

Abstract

The equivalent wavelength (λE), at which the aerosol optical depth (AOD) is equal to broadband AOD (BAOD), can change in a wide range from 0.619 μm to 1.575 μm in the usual aerosol conditions. By using the least squares technique and some empirical corrections, a parameterized relationship of λE with BAOD, Ångström wavelength exponent (α), solar zenith angle (θ0) and H2O amount is developed. Using this relationship, and based on the strong sensitivity of BAOD on θ0 when θ0>70°, the broadband extinction method to derive the spectral AOD and α is further proposed. As shown in comparative simulations to retrieve AOD by the present, Molineaux et al. and Gueymard methods, the present method has the best accuracy in most simulations using Junge, MODTRAN, log-normal and Deirmendjian aerosol models. A key question of the pyrheliometer method to determine wavelength-dependent AODs is the effect of uncertainty in the aerosol size istribution. It is found that the AOD solution around λE is less sensitive to the uncertainty. The wavelength exponent α is derived using an assumption of the stable atmospheric turbidity. If the pyrheliometer data from θ0=85° to 70° are used and the change of the turbidity is ±10%, the error of solutionα is usually within ±0.32. If the variation of the turbidity is random, the mean value of a lot of the measurements of α would be very reasonable.

How to Cite: Qiu, J., 2001. Broadband extinction method to determine atmospheric aerosol optical properties. Tellus B: Chemical and Physical Meteorology, 53(1), pp.72–82. DOI: http://doi.org/10.3402/tellusb.v53i1.16540
  Published on 01 Jan 2001
 Accepted on 10 Jul 2000            Submitted on 11 May 1999

References

  1. Ångström , A . 1929 . On the atmospheric transmission of sun radiation and on dust in the air . Geogr. Annal . 2 , 156 – 166 .  

  2. Ångström , A . 1964 . The parameters of atmospheric turbidity . Tellus 16 , 64 – 75 .  

  3. Deirmendjian , D . 1969 . Electromagnetic scattering on spherical polydispersions . American Elsevier , New York .  

  4. Berk , A. , Bernstein , L. S. and Robertson , D. C . 1996. MODTRAN: a moderate resolution model for MODTRAN, GL-TR-89-0122 (1989), updated and commercialized by Ontar Corporation, 9 Village Way, North Andover, Mass. 01845, U.S.A.  

  5. Blanchet J. P . 1982 . Application of the Chandrasekhar mean to aerosol optical parameters . Atmos. Ocean 20 , 189 – 206 .  

  6. Gueymard , C . 1998 . Turbidity determination from broadband irradiance measurements: a detailed multi-coefficient approach . J. Appl. Meteorol . 37 , 414 – 435 .  

  7. Kasten , F . 1980 . A simple parameterization of the pyrheliometer formula of the Linke turbidity factor . Meteorol. Rdsch . 33 , 124 – 127 .  

  8. Linke , F . 1922 . Transmissions — koeffizient und trü-bungsfaktor . Beitr. Phys. Fr. Atmos . 10 , 91 – 103 .  

  9. Maxwell , E. L. , Myers , D. R. , Rymes , M. D. , Stoffel , T. L. and Wilcox , S. M . 1991. Producing a national solar radiation data base. 1991 Solar Wind Congress, M. E. Arden , S. M. A. Burley and M. Coleman (eds.). Pergamon Press , pp. 1007 – 1012  

  10. Molineaux , B. , Ineichen , P. And O'Neill , N. 1998 . Equivalence of pyrheliometric and monochromatic aerosol optical depths at a single key wavelength . Appl. Opt . 37 , 7008 – 7018 .  

  11. Qiu , J . 1998 . A method to determine atmospheric aerosol optical depth using total direct solar radiation. J. Atmos. Sc i . 55 , 734 – 758 .  

  12. Qiu , J. and Yang , L . 1999 . Variation characteristics of atmospheric aerosol optical depths and visibility in north China during 1980-1994 . Atmospheric Environment 34 , 601 – 607 .  

  13. Roosen , R. G. , Angione , R. J. and Klemeke , C. H . 1973 . Worldwide variations in atmospheric transmission: 1. Baseline results from Smithsonian observations . Bull. Amer. Meteor. Soc . 54 , 307 – 316 .  

  14. Schüepp , W . 1949. Die bestimmung der Komponenten der atmosphaerischen Trung aus Aktinometermessungen. Arch. Meteor. Geophys. Bioklimatol. Bl, 257.  

  15. Stothers , R. B . 1996 . Major optical depth perturbations to the stratosphere from volcanic eruptions: pyrheli-metric period, 1881-1960 . J. Geophys. Res . 101 , 3901 – 3920 .  

  16. Thekaekara , M. P . 1973 . Solar energy outside the earth atmosphere . Solar Energy 14 , 109 – 127 .  

  17. Unsworth , M. H. and Monteith , J. L . 1972 . Aerosol and solar radiation in Britain . Quart J. Roy. Meteorol. Soc . 98 , 778 – 797 .  

  18. Zhou , X. , Li , W. and Luo , Y . 1998 . Numerical simulation of the aerosol radiative forcing and regional climate effect over China. Chinese J . Atmos. Sc i . 22 , 418 – 427 .  

  19. WMO 1981 . Meteorological aspects of utilization of solar radiation as an energy source . Geneva: Secretariat of WMO , Techn. Note No. 172 , WMO-No . 557,122 .  

comments powered by Disqus