Start Submission Become a Reviewer

Reading: Evaluating trace gas sampling strategies with assistance from a global 3D photochemical mode...

Download

A- A+
Alt. Display

Original Research Papers

Evaluating trace gas sampling strategies with assistance from a global 3D photochemical model: case studies for CEPEX and NARE O3 profiles

Author:

Mark G. Lawrence

Max-Planck-Institut für Chemie, Abteilung Luftchemie, DE
X close

Abstract

A technique is presented for evaluating sampling strategies based on in situ measurements and output from a 3D photochemical model. The technique quantifies the expected ability of various sampling strategies to give a representative picture of the actual mean trace gas concentration at the location being sampled. The representativeness is considered as a function of three parameters: (1) the number of samples, (2) the time between individual samples, and (3) the total time from the first to last sample. The technique is applied to analyzing the quality of various sampling strategies for ozone above five locations, ranging from the equatorial Pacific to the northern Atlantic. The analysis is based on data obtained by O3 sondes during the CEPEX and NARE campaigns, along with the output from the global 3D photochemistry-transport model MATCH-MPIC. It is found that for all regions, the synoptic time scale of 3–5 days is a critical parameter for O3. As long as the interval between soundings does not exceed this time scale, the number of soundings within a specific period does not strongly affect the representativeness of the sample mean profile; instead, the total period from the first to last sample is the most important parameter. For longer intervals between soundings, the behavior becomes more complex, with certain intervals resulting in better or worse representativeness than other intervals for the same total number of soundings. The model output is shown to generally be able to capture the synoptic time scale variability, and thus can be useful for establishing the relationship between synoptic meteorology and sampling strategies for various locations. However, the model underestimates the variability due to sub-gridscale processes (mainly convection), and thus must be used more cautiously in regions where this is critical, such as in the tropical upper troposphere. Future analyses such as this using previous observations and model output could assist field investigators in planning sampling strategies for campaigns or long-term monitoring.

How to Cite: Lawrence, M.G., 2001. Evaluating trace gas sampling strategies with assistance from a global 3D photochemical model: case studies for CEPEX and NARE O3 profiles. Tellus B: Chemical and Physical Meteorology, 53(1), pp.22–39. DOI: http://doi.org/10.3402/tellusb.v53i1.16531
  Published on 01 Jan 2001
 Accepted on 25 Apr 2000            Submitted on 24 Nov 1998

References

  1. DeMore , W. B. , Sander , S. P. , Howard , C. J. , Ravishankara , A. R. , Golden , D. M. , Kolb , C. E. , Hampson , R. F. , Kurylo , M. J. and Molina , M. J . 1994 . Chemical kinetics and photochemical data for use in stratospheric modeling . NASA JPL (Jet Propulsion Laboratory) , Pasadena , California .  

  2. Dentener , F. J. and Crutzen , P. J . 1993 . Reaction of N2O5 on tropospheric aerosols: impact on the global distributions of NO„ 03, and OH . J. Geophys. Res . 98 , 7149 – 7163 .  

  3. Dickerson , R. R. , Rhoads , K. P. , Carsey , T. P. , Oltmans , S. J. , Burrows , J. P. and Crutzen , P. J . 1999 . Ozone in the remote marine boundary layer: a possible role for halogens . J. Geophys. Res . 104 , 21385 – 21395 .  

  4. Ehhalt , D. H. , Rohrer , F. , Kraus , A. B. , Prather , M. J. , Blake , D. R. and Rowland. F. S . 1997 . On the significance of regional trace gas distributions as derived from aircraft campaigns in PEM-West A and B . J. Geophys. Res . 102 , 28 , 333-28 , 351 .  

  5. Fortuin , J. P. F. and Kelder , H . 1998 . An ozone climatology based on ozonesonde and satellite measurements . J. Geophys. Res . 103 , 31709 – 31734 .  

  6. Fung , I. , John , J. , Lerner , J. , Matthews , E. , Prather , M. , Steele , L. P. and Fraser , P. J . 1991 . Three-dimensional model synthesis of the global methane cycle . J. Geophys. Res . 96 , 13 , 033-13 , 065 .  

  7. Ganzeveld , L. and Lelieveld , J . 1995 . Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases . J. Geophys. Res . 100 , 20 , 999-21 , 012 .  

  8. Gibbs , A. G. and Slinn , W. G. N . 1973 . Fluctuations in trace gas concentrations in troposphere . J. Geophys. Res . 78 , 574 – 576 .  

  9. Gillette , D. A. and Hanson , K. J . 1983 . Sampling strategy to obtain data used in models of global annual CO2 increase and global carbon cycle . J. Geophys. Res . 88 , 1345 – 1348 .  

  10. Junge , C. E . 1974 . Residence time and variability of tropospheric trace gases . Tellus 26 , 477 – 488 .  

  11. Kalnay , E. , Kanamitsu , M. , Kistler , R. , Collins , W. , Deaven , D. , Gandin , L. , Iredell , M. , Saha , S. , White , G. , Woollen , J. , Zhu , Y. , Chelliah , M. , Ebisuzaki , W. , Higgins , W. , Janowiak , J. , Mo , K. C. , Ropelewski , C. , Wang , J. , Leetmaa , A. , Reynolds , R. , Jenne , R. and Joseph , D. 1996 . The NCEP/NCAR 40-year reanalysis project. Bull. Am. Met. Soc.77, 437 – 471.  

  12. Keating , G. M. , Young , D. F. and Pitts , M. C . 1987 . Ozone reference models for CIRA . Adv. Space Res . 7 , 105 – 115 .  

  13. Kley , D. , Crutzen , P. J. , Smit , H. G. J. , Vömel , H. , Oltmans , S. J. , Grassl , H. and Ramanathan , V . 1996 . Observations of near-zero ozone concentrations over the convective Pacific: effects on air chemistry . Science 274 , 230 – 233 .  

  14. Kley , D. , Smit , H. G. J. , Vömel , H. , Grassl , H. , Ramanathan , V. , Crutzen , P. J. , Williams , S. , Meywerk , J. and Oltmans , S . 1997 . Tropospheric water vapor and ozone cross-sections in a zonal plane over the central equatorial Pacific . Quart. J. R. Met. Soc . 123 , 2009 – 20040 .  

  15. Kyrö , E. , Taalas , P. , Jorgensen , T. S. , Knudsen , B. , Stordahl , F. , Braathen , G. , Dahlback , A. , Neuber , R. , Kruger , B. C. , Dorokhov , V. , Yuskov , V. A. , Rudakov , V. V. and Torres , A . 1992 . Analysis of the ozone soundings made during the first quarter of 1989 in the Arctic . J. Geophys. Res . 97 , 8083 – 8091 .  

  16. Landgraf , J. and Crutzen , P. J . 1998 . An efficient method for online calculations of photolysis and heating rates. J. Atmos. Sc i . 55 , 863 – 878 .  

  17. Lawrence , M. G . 1996 . Photochemistry in the tropical Pacific troposphere: studies with a global 3D chemistry—meteorology model. Doctoral Thesis , Georgia Institute of Technology , Atlanta, Georgia, USA, pp . 520 .  

  18. Lawrence , M. G. , Crutzen , P. J. and Rasch , P. J . 1999a . Analysis of the CEPEX ozone data using a 3D chemistry—meteorology model . Quart. J. Roy. Met. Soc . 125 , 2987 – 3009 .  

  19. Lawrence , M. G. , Crutzen , P. J. , Rasch , P. J. , Eaton , B. E. and Mahowald , N. M . 1999b . A model for studies of tropospheric photochemistry: description, global distributions, and evaluation . J. Geophys. Res . 104 , 26 , 245-26 , 278 .  

  20. Logan , J. A . 1994 . Trends in the vertical distribution of ozone: an analysis of ozonesonde data . J. Geophys. Res . 99 , 22 , 553-25 , 585 .  

  21. Logan , J. A . 1999 . An analysis of ozonesonde data for the troposphere: recommendations for testing 3D models and development of a gridded climatology for tropospheric ozone . J. Geophys. Res . 99 , 22 , 553-25 , 585 .  

  22. Mahowald , N. M. , Rasch , P. J. , Eaton , B. E. , Whittlestone , B. and Prinn , R. G . 1997a . Transport of 222Radon to the remote troposphere using MATCH and assimilated winds from ECMWF and NCEP/ NCAR . J. Geophys. Res . 102 , 28139 – 28152 .  

  23. Mahowald , N. M. , Prinn , R. G. and Rasch , P. J . 1997b . Deducing CCI3F emissions using an inverse method and chemical transport models with assimilated winds . J. Geophys. Res . 102 , 28 , 153-28 , 168 .  

  24. Marenco , A. , Thouret , V. , Nedelec , P. , Smit , H. G. , Helten , M. , Kley , D. , Karcher , F. , Simon , P. , Law , K. , Pyle , J. , Poschmann , G. , Von Wrede , R. , Hume , C. and Cook , T . 1998 . Measurement of 03 and water vapor by Airbus in-service aircraft: the MOZAIC air-borne program, an overview . J. Geophys. Res . 103 , 25631 – 25642 .  

  25. Murphy , D. M. , Fahey , D. W. , Proffitt , M. H. , Liu , S. C. , Chan , K. R. , Eubank , C. S. , Kawa , S. R. and Kelly , K. K . 1993 . Reactive nitrogen and its correlation with ozone in the lower stratosphere and upper troposphere . J. Geophys. Res . 98 , 8751 – 8773 .  

  26. Oltmans , S. J. , Levy II , H. , Harris , J. M. , Merrill , J. T. , Moody , J. L. , Lathrop , J. A. , Cuevas , E. , Trainer , M. , O'Neill , M. S. , Prospero , J. M. , Vömel , H. and Johnson, B. J. 1996. Summer and spring ozone profiles over the North Atlantic from ozonesonde measurements. J. Geophys. Res . 101 , 29179 – 29200.  

  27. Pan , H.-L. and Wu , W.-S . 1995 . Implementing a mass flux convection parameterization package for the NMC medium-range forecast model . NMC Office Note, No . 409 , 40 pp .  

  28. Rasch , P. J. and Kristjansson , J. E . 1998 . A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations . J. Clim . 11 , 1587 – 1614 .  

  29. Rasch , P. J. and Williamson , D. L . 1990 . Computational aspects of moisture transport in global models of the atmosphere . Quart. J. R. Met. Soc . 116 , 1071 – 1090 .  

  30. Rasch , P. J. , Mahowald , N. M. and Eaton , B. E . 1997 . Representations of transport, convection, and the hydrologic cycle in chemical transport models: implications for the modeling of short lived and soluble species . J. Geophys. Res . 102 , 28 , 127-28 , 138 .  

  31. Rhoads , K. P. , Kelly , P. , Dickerson , R. R. , Carsey , T. , Farmer , M. , Oltmans , S. J. , Savoie , D. and Prospero , J. M . 1998 . The composition of the troposphere over the Indian Ocean during the monsoonal transition . J. Geophys. Res . 102 , 18 , 981-18 , 995 .  

  32. Slingo , J. M . 1987 . The development and verification of a cloud prediction scheme for the ECMWF model . Quart. J. R. Met. Soc . 113 , 899 – 927 .  

  33. Smit , H. G. J. , Strater , W. , Kley , D. and Proffitt , M. H . 1994. The evaluation of ECC ozone sondes under quasi flight conditions in the environmental chamber at Mich. In: Transport and transformation of pollutants in the troposphere, P. M. Borrell, P. Borrell, T. Cvitas and W. Seiler (eds). SPB Academic Publishing, Den Haag.  

  34. Suhre , K. , Cammas , J.-P. , Nedelec , P. , Rosset , R. , Mar-enco , A. and Smit , H. G. J . 1997 . Ozone-rich transients in the upper equatorial Atlantic troposphere . Nature 388 , 661 – 663 .  

  35. Thompson , A. M. , Johnson , J. E. , Torres , A. L. , Bates , T. S. , Kelley , K. C. , Atlas , E. , Greenberg , J. P. , Don-ahue , N. M. , Yvon , S. A. , Saltzman , E. S. , Heikes , B. G. , Mosher , B. W. , Shashkov , A. A. and Yegerov , V. I. , 1993 . Ozone observations and a model of marine boundary layer photochemistry during SAGA 3 . J. Geophys. Res . 98 , 16 , 955-16 , 968 .  

comments powered by Disqus