Start Submission Become a Reviewer

Reading: Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model

Download

A- A+
Alt. Display

Original Research Papers

Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model

Author:

Timothy M. Lenton

Institute of Terrestrial Ecology, Edinburgh Research Station, GB
X close

Abstract

A simple Earth system model is developed by coupling a box model of the global carbon cycle to an energy-balance approximation of global temperature. The model includes a range of feedback mechanisms between atmospheric CO2, surface temperature and land and ocean carbon cycling. It is used to assess their effect on the global change being driven by anthropogenic CO2 emissions from fossil fuel burning and land-use change. When tuned to reach the 1990 level of atmospheric CO2, the model CO2 predictions for 1832–1990 are reasonably close to ice-core and instrumental records, observed global warming of ~0.6 K from 1860–1990 is accurately predicted and the land and ocean carbon sinks for the 1980s are close to IPCC central estimates. The ocean sink is reduced by ~0.3 GtC yr-1 when the ocean surface is assumed to warm at the same rate as global surface temperature. Land and oceanic carbon sinks are predicted to be growing at present and hence buffering the rate of rise of atmospheric CO2. In the basic model, the current land carbon sink is assumed to be due to CO2 fertilisation of photosynthesis. The slight warming that has occurred enhances soil respiration (carbon loss) and net primary productivity (carbon uptake) by similar amounts. When the model is forced with a “business as usual”(IS92a) emissions scenario for 1990–2100 followed by a linear decline in emissions to zero at 2200, CO2 reaches a peak of 985 ppmv in 2170 and temperature peaks at +5.5 K in 2180. Peak CO2 is ~135 ppmv higher than suggested by IPCC for the same forcing, principally because global warming first suppresses the land carbon sink then generates a land carbon source. When warming exceeds ~4.5 K, soil respiration “overtakes” the CO2 fertilisation of NPP, triggering a release of ~70 GtC from terrestrial ecosystems over ~100 years. When the effects of temperature on photosynthesis, respiration and soil respiration are removed, peak levels of CO2 are reduced by ~100 ppmv and peak temperature by ~0.5 K. Distinguishing separate soil carbon pools with different residence times does not significantly alter the timing of the switch to a land carbon source or its effect on peak CO2, but it causes the source to persist for longer. If forest re-growth or nitrogen deposition are assumed to contribute to the current land carbon sink, this implies a weaker CO2 fertilisation effect on photosynthesis and generates a larger future carbon source. Peak CO2 levels are also sensitive by about ±80 ppmv to upper and lower limits on the temperature responses of photosynthesis, plant respiration and soil respiration. By forcing the model with a range of future emission scenarios it is found that the creation of a significant land carbon source requires rapid warming, exceeding ~4.5 K, and its magnitude increases with the rate of forcing. The carbon source is greatest for the most rapid burning of the largest reserve of fossil fuel. It is concluded that carbon loss from terrestrial ecosystems may significantly (~10%) amplify global warming under “business as usual” or more extreme scenarios.

How to Cite: Lenton, T.M., 2000. Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus B: Chemical and Physical Meteorology, 52(5), pp.1159–1188. DOI: http://doi.org/10.3402/tellusb.v52i5.17097
3
Views
1
Downloads
  Published on 01 Jan 2000
 Accepted on 31 Jan 2000            Submitted on 14 Jun 1999

REFERENCES

  1. Archer , D. , Kheshgi , H. and Maier-Reimer , E . 1998 . Dynamics of fossil fuel CO2 neutralization by marine CaCO3 . Global Biogeochemical Cycles 12 , 259 – 276 .  

  2. Bacastow , R. and Keeling , C. D . 1973 . Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II Changes from AD. 1700 to 2070 as deduced from a geochemical model. In: Carbon and the bio-sphere (eds. G. M. Woodwell and E. V. Pecan ). USAEC, Springfield, Virginia, U.S.A., 86 – 135 .  

  3. Berner , R. A . 1990 . Atmospheric carbon dioxide levels over Phanerozoic time . Science 249 , 1382 – 1386 .  

  4. Berry , J. and Björkman, 0. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology . 31 , 491 – 543 .  

  5. Bird , M. I. , Chivas , A. R. and Head , J. 1996. A latitudinal gradient in carbon turnover times in forest soils. Nature 381 , 143 – 146 .  

  6. Bird , M. I. , Lloyd , J. and Farquhar , G. D . 1994 . Terrest-rial carbon storage at the LGM . Nature 371 , 566 .  

  7. Braswell , B. H. , Schimel , D. S. , Linder , E. and Moore , B. , III. 1997 . The response of global terrestrial eco-systems to interannual temperature variability . Science 278 , 870 – 872 .  

  8. Cao , M. and Woodward , F. I . 1998 . Dynamic responses of terrestrial ecosystem carbon cycling to global cli-mate change . Nature 393 , 249 – 252 .  

  9. Chamberlain , J. W . 1980 . Changes in the planetary heat balance with chemical changes in air . Planetary and Space Science 28 , 1011 – 1018 .  

  10. Chappellaz , J. , Barnola , J. M. , Raynaud , D. , Korotkev-ich , Y. S. and Lorius , C . 1990 . Ice-core record of atmospheric methane over the past 160,000 years . Nature 345 , 127 – 131 .  

  11. Craig , S. G. and Holmén , K. J . 1995 . Uncertainties in future CO2 projections . Global Biogeochemical Cycles 9 , 139 – 152 .  

  12. Dickinson , R. E . 1986 . How will climate change? The climate system and modelling of future climate. In: The Greenhouse effect, climatic change and ecosystems (eds. B. Bolin, B. R. Doos, J. Jager and R. A. Warrick ). John Wiley & Sons, Chichester, 207 – 270 .  

  13. Dickson , A. G . 1990 . Thermodynamics of the dissociation of boric-acid in synthetic seawater from 273.15-K to 318.15-K . Deep-Sea Research Part A - Oceano-graphic Research Papers 37 , 755 – 766 .  

  14. Duursma , E. K. and Boisson , M. P. R. M . 1994 . Global oceanic and atmospheric oxygen stability considered in relation to the carbon cycle and to different time scales . Oceanologica Acta 17 , 117 – 141 .  

  15. Etheridge , D. M. , Steele , L. P. , Langenfelds , R. L. , Fran-cey , R. J. , Barnola , J.-M. and Morgan , V. I . 1998 . Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores. In: Trends: a compendium of data on global change . Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA.  

  16. Foley , J. A. , Levis , S. , Prentice , I. C. , Pollard , D. and Thompson , S. L . 1998 . Coupling dynamic models of vegetation and climate . Global Change Biology 4 , 561 – 579 .  

  17. Friedlingstein , P. , Fung , I. , Holland , E. , John , J. , Brass-eur , G. , Erickson , D. and Schimel , D . 1995 . On the contribution of CO2 fertilization to the missing bio-spheric sink . Global Biogeochemical Cycles 9 , 541 – 556 .  

  18. Friend , A.D. ., Stevens, A. K., Knox, R. G. and Cannell, M. G. R. 1997. A process-based, terrestrial biosphere model of vegetation dynamics. Ecological Modelling 95 , 249 – 287  

  19. Ganopolski , A. , Kubatzki , C. , Claussen , M. , Brovkin , V. and Petoukhov , V . 1998a . The influence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene . Science 280 , 1916 – 1919 .  

  20. Ganopolski , A. , Rahmstorf , S. , Petoukhov , V. and Claussen , M . 1998b . Simulation of modern and glacial climates with a coupled global model of intermediate complexity . Nature 391 , 351 – 356 .  

  21. Gifford , R. M . 1993 . Implications of CO2 effects on vegetation for the global carbon budget . In: The global carbon cycle ( ed. M. Heimann ). Springer-Verlag , Berlin , 159 – 199 .  

  22. Goyet , C. and Poisson , A . 1989 . New determination of carbonic-acid dissociation constants in seawater as a function of temperature and salinity . Deep-Sea Research Part A - Oceanographic Research Papers 36 , 1635 – 1654 .  

  23. Harvey , L. D. D . 1989 . Effect of model structure on the response of terrestrial biosphere models to CO2 and temperature increases . Global Biogeochemical Cycles 3 , 137 – 153 .  

  24. Hasselmann , K. , Hasselmann , S. , Giering, R., Ocana, V. and Storch, H. v. 1977. Sensitivity study of optimal CO2 emissions path using a simplified structural inte-grated assessment model (SIAM). Climate Change 37 , 345 – 386 .  

  25. Holland , E. A. , Braswell , B. H. , Lamarque , J.-F. , Town-send , A. , Sulzman , J. , Muller , J.-F. , Dentener , F. , Brass-eur , G. , Levy , H. , II , Penner , J. E. and Roelofs , G.-J . 1997 . Variations in the predicted spatial distribu-tion of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. Journal of Geophysical Research 102 , 15,849 – 15,866  

  26. Holland , E. A. , Townsend , A. R. and Vitousek , P. M . 1995 . Variability in temperature regulation of CO2 fluxes and N mineralization from five Hawaiian soils: implications for a changing climate . Global Change Biology 1 , 115 – 123 .  

  27. Houghton , J. T. , Jenkins , G. J. and Ephraums , J. J . 1990 . CLIMATE CHANGE. The IPCC Scientific Assessment . Cambridge University Pres , Cambridge .  

  28. Houghton , J. T. , Filho , L. G. M. , Callander , B. A. , Harris , N. , Kattenberg , A. and Maskell , K . 1996 . Climate change 1995: the science of climate change . Cambridge University Press , Cambridge .  

  29. Houghton , R. A . 1995a . Effects of land-use change, sur-face temperature, and CO2 concentration on terrestrial stores of carbon . In: Biotic feedbacks in the global climatic system: will the warming feed the warming? ( eds. G. M. Woodwell and F. T. Mackenzie ). Oxford University Press , Oxford , 333 – 350 .  

  30. Houghton , R. A . 1995b . Land-use change and the carbon cycle . Global Change Biology 1 , 275 – 287 .  

  31. Houghton , R. A. , Davidson , E. A. and Woodwell , G. M . 1998 . Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon bal-ance . Global Biogeochemical Cycles 12 , 25 – 34 .  

  32. Houghton , R. A. and Hackler , J. L . 1998 . Continental scales estimates of the biotic carbon flux from land cover change: 1850 to 1980 (1995). In: Trends: a com-pendium of data on global change . Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.A.  

  33. Huntingford , C. and Cox , P. M . 2000 . An analogue model to derive additional climate change scenarios from existing GCM simulations . Climate Dynamics , in press .  

  34. Jain , A. K. , Kheshgi , H. S. , Hoffert , M. I. and Wuebbles , D. J . 1995 . Distribution of radiocarbon as a test of global carbon cycle models . Global Biogeochemical Cycles 9 , 153 – 166 .  

  35. Jenkinson , D. S. , Adams , D. E. and Wild , A . 1991 . Model estimates of CO2 emissions from soil in response to global warming . Nature 351 , 304 – 306 .  

  36. Johnson , I. R. and Thornley , J. H. M . 1985 . Temperature dependence of plant and crop processes . Annals of Botany 55 , 1 – 24 .  

  37. Joos , F. , Plattner , G.-K. , Stocker , T. F. , Marchal, O., and Schmittner, A. 1999. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284 , 464 – 467  

  38. Kasting , J. F. , Whitmore , D. P. and Reynolds , R. T . 1993 . Habitable zones around main sequence stars . Icarus 101 , 108 – 128 .  

  39. Keeling , C. D. and Whorf , T. P . 1998 . Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.A. Keeling, C. D., Chin, J. S. F. and Whorf, T. P. 1996a. Increased activity of northern vegetation inferred from atmospheric CO2 measurements . Nature 382 , 146 – 149 .  

  40. Keeling , C. D. , Whorf , T. P. , Wahlen , M. and Van der Plicht , J . 1995 . Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 . Nature 375 , 666 – 670 .  

  41. Keeling , R. F. , Piper , S. C. and Heiman , M . 1996b . Global and hemispheric CO2 sinks deduced from changes in atmospheric 02 concentration . Nature 381 , 218 – 221 .  

  42. King , A. W. , Post , W. M. and Wullschleger , S. D . 1997 . The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2 . Climatic Change 35 , 199 – 227 .  

  43. Knox , F. and McElroy , M. B . 1984 . Changes in atmo-spheric CO2: influence of the marine biota at high latitude . Journal of Geophysical Research 89 , 4629 – 4637 .  

  44. Kohlmaier , G. H ., Sire, E-0., Janecek, A., Keeling, C. P., Piper, S. C. and Revelle, R. 1989. Modelling the seasonal contribution of a CO2 fertilization effect of the terrestrial vegetation to the amplitude increased in atmospheric CO2 at Mauna Loa Observatory. Tellus 41B , 487 – 510  

  45. Kwon, 0.-Y. and Schnoor, J. L. 1994. Simple global carbon model: the atmosphere-terrestrial biosphere-ocean interaction. Global Biogeochemical Cycles 8 , 295 – 305  

  46. Lashof , D. A ., 1989 . The dynamic greenhouse: feedback processes that may influence future concentrations of atmospheric trace gases and climatic change . Climatic Change 14 , 213 – 242 .  

  47. Leggett , J. , Pepper , W. J. and Swart , R. J . 1992 . Emissions scenarios of the IPCC: an update. In: Climate Change 1992: The supplementary report to the IPCC scientific assessment (eds. J. T. Houghton, B. A. Callander and S. K. Varney ). Cambridge University Press, Cambridge.  

  48. Liski , J. , Livesniemi , H. , Makela , A. and Westman , C. J . 1999 . CO2 emissions from soil in response to climatic warming are overestimated - the decomposition of old soil organic matter is tolerant of temperature . Ambio 28 , 171 – 174 .  

  49. Lloyd , J . 1999 . Current perspectives on the terrestrial carbon cycle . Tellus 51B , 336 – 342 .  

  50. Lloyd , J. and Taylor , J. A . 1994 . On the temperature dependence of soil respiration . Functional Ecology 8 , 315 – 323 .  

  51. Manabe , S. and Stouffer , R. J . 1993 . Century-scale effects of increased atmospheric CO2 on the ocean-atmo-sphere system . Nature 364 , 215 – 218 .  

  52. Maryland , G. , Boden , T. A. , Andres , R. J , Brenkert , A. L. and Johnston , C. A . 1998 . Global, regional, and national fossil fuel CO2 emissions. In: Trends: a com-pendium of data on global change . Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.A.  

  53. McGuffie , K. and Henderson-Sellers , A . 1997 . A climate modelling primer . John Wiley & Sons , Chichester .  

  54. McKay , C. P. , Lorenz , R. D. and Lunine , J. I . 1999 . Analytic solutions for the antigreenhouse effect: Titan and the early Earth . Icarus 137 , 56 – 61 .  

  55. Menzel , A. and Fabian , P . 1999 . Growing season extended in Europe . Nature 397 , 659 .  

  56. Mohr , H. and Schopfer , P . 1995 . Plant physiology . Springer-Verlag , Berlin .  

  57. Nadelhoffer , K. J. , Emmett , B. A. , Gundersen , P. , Kjonaas, O. J., Kipmans, C. J., Schleppi, P., Titema, A. and Wright, R. F. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temper-ate forests. Nature 398 , 145 – 148  

  58. Nakajima , S. , Hayashi , Y.-Y. and Abe , Y . 1992 . A study on the “runaway greenhouse effect” with a one-dimen-sional radiative-convective equilibrium model . Journal of the Atmospheric Sciences 49 , 2256 – 2266 .  

  59. Oeschger , H. , Siegenthaler , U. , Schotterer , U. and Gugel-mann , A . 1975 . A box diffusion model to study the carbon dioxide exchange in nature . Tellus 27 , 168 – 192 .  

  60. Park , P. K . 1969 . Oceanic CO2 system: an evaluation of ten methods of investigation . Limnology and Oceano-graphy 14 , 179 – 186 .  

  61. Peterson , B. J. and Melillo , J. M . 1985 . The potential storage of carbon caused by eutrophication of the biosphere . Tellus 37B , 117 – 127 .  

  62. Potter , C. S. , Randerson , J. T. , Field , C. B. , Matson , P. A. , Vitousek , P. M. , Mooney , H. A. and Klooster , S. A . 1993 . Terrestrial ecosystem production: a process model based on global satellite and surface data . Global Biogeochemical Cycles 7 , 811 – 841 .  

  63. Raich , J. W. and Schlesinger , W. H . 1992 . The global carbon dioxide flux in soil respiration and its relation-ship to vegetation and climate . Tellus 44B , 81 – 99 .  

  64. Randerson , J. T. , Thompson , M. V. and Field , C. B . 1998 . Linking 13C-based estimates of land and ocean sinks with predictions of carbon storage from CO2 fertilization of plant growth . Tellus 51B , 668 – 678 .  

  65. Rotmans , J. and Den Elzen , M. G. J . 1993 . Modelling feedback mechanisms in the carbon cycle: balancing the carbon budget . Tellus 45B , 301 – 320 .  

  66. Saleska , S.R. ., Harte, J. and Torn, M. S. 1999. The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Global Change Biology 5 , 125 – 141  

  67. Sarmiento , J. L. and Toggweiler , J. R . 1984 . A new model for the role of the oceans in determining atmospheric PCO2 . Nature 308 , 621 – 624 .  

  68. Sarmiento , J. L. , Hughes , T. M. C. , Stouffer , R. J. and Manabe , S . 1998 . Simulated response of the ocean carbon cycle to anthropogenic climate warming . Nature 393 , 245 – 249 .  

  69. Schimel , D. S. , Braswell , B. H. , Holland , E. A. , McKeown , R. , Ojima , D. S. , Painter , T. H. , Parton , W. J. and Townsend , A. R . 1994 . Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils . Global Biogeochemical Cycles 8 , 279 – 293 .  

  70. Schimel, D. , Enting, I. G. , Heimann, M. , Wigley, T. M. L. , Raynaud, D. , Alves, D. and Siegenthaler, U. 1995. CO2 and the carbon cycle. In: Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios ( eds. J. T. Houghton, L. G. M. Filho, J. Bruce, H. Lee, B. A. Callander, E. Haites, N. Harris and K. Maskell ). Cambridge University Press, Cambridge, 35 – 71 .  

  71. Schimel , D. , Alves , D. , Enting , I. , Heimann , M. , Joos , F. , Raynaud , D. , Wigley , T. , Prather , M. , Derwent , R. , Ehhalt , D. , Fraser , P. , Sanhueza , E. , Zhou , X. , Joas , P. , Charlson , R. , Rodhe , H. , Sadasivan , S. , Shine , K. P. , Fouquart , Y. , Ramaswamy , V. , Solomon , S. , Sriniva-san , J. , Albritton , D. , Derwent , R. , Isaksen , I. , Lal , M. and Wuebbles , D . 1996 . Radiative forcing of climate change. In: Climate change 1995: the science of climate change (eds. J. T. Houghton , L. G. M. Filho , B. A. Callander , N. Harris , A. Kattenberg and K. Maskell ). Cambridge University Press, Cambridge.  

  72. Schindler , D. W. and Bayley , S. E . 1993 . The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition . Global Biogeo-chemical Cycles 7 , 717 – 733 .  

  73. Siegenthaler , U . 1983 . Uptake of excess CO2 by an out-crop-diffusion model of the ocean . Journal of Geo-physical Research 88 , 3599 – 3608 .  

  74. Siegenthaler , U. and Joos , F . 1992 . Use of a simple model for studying oceanic tracer distributions and the global carbon cycle . Tellus 44B , 186 – 207 .  

  75. Siegenthaler , U. and Sarmiento , J. L . 1993 . Atmospheric carbon dioxide and the ocean. Nature 365 , 119 - 125 .  

  76. Siegenthaler , U . and Wenk , T . 1984 . Rapid atmospheric CO2 variations and ocean circulation . Nature 308 , 624 – 626 .  

  77. Smith , T. M. and Shugart , H. H . 1993 . The transient response of terrestrial carbon storage to a perturbed climate . Nature 361 , 523 – 526 .  

  78. Stallard , R. F . 1998 . Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to a carbon burial . Global Biogeochemical Cycles 12 , 231 – 257 .  

  79. Sundquist , E. T . 1985 . Geological perspectives on carbon dioxide and the carbon cycle. In: The carbon cycle and atmospheric CO2: natural variations archean to present (eds. E. T. Sundquist and W. S. Broecker ). A.G.U., Washington, D.C., 5 – 59 .  

  80. Sundquist , E. T . 1993 . The global carbon-dioxide budget . Science 259 , 934 – 941 .  

  81. Thornley , J. H. M . 1998 . Grassland dynamics: an eco-system simulation model . CAB International , Wallingford .  

  82. Toggweiler , J. R. and Sarmiento , J. L . 1985 . Glacial to interglacial changes in atmospheric carbon dioxide: the critical role of ocean surface water in high latitudes. In: The carbon cycle and atmospheric CO2: natural variations archean to present (eds. E. T. Sundquist and W. S. Broecker ). A.G.U., Washington, D.C., 163 – 184 .  

  83. Townsend , A. R. , Braswell , B. H. , Holland , E. A. and Penner , J. E . 1996 . Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen . Ecological Applications 6 , 806 – 814 .  

  84. Townsend , A. R. , Vitousek , P. M. and Holland , E. A . 1992 . Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temper-atures . Climatic Change 22 , 293 – 303 .  

  85. Trenberth , K. E . 1992 . Climate system modelling . Cam-bridge University Press , Cambridge .  

  86. Trumbore , S. E. , Chadwick, O. A., and Amundsen, R. 1996. Rapid exchange between soil carbon and atmo-spheric carbon dioxide driven by temperature change. Science 272 , 393 – 396  

  87. Vitousek , P. M. , Mooney , H. A. , Lubchenco , J. and Melillo , J. M . 1997 . Human domination of Earth's ecosystems . Science 277 , 494 – 499 .  

  88. Walker , J. C. G. and Kasting , J. F . 1992 . Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide . Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section) 97 , 151 – 189 .  

  89. White , A. , Cannell , M. G. R. and Friend , A. D . 1999 . Climate change impacts on ecosystems and the terrest-rial carbon sink: a new assessment . Global Environ-mental Change 9 , S21–S30 .  

  90. Wigley , T. M. L . 1993 . Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes . Tellus 45B , 409 – 425 .  

  91. Woodwell , G. M . 1983 . Biotic effects on the concentra-tion of atmospheric carbon dioxide: a review and pro-jection . In: Changing climate ( eds. C.D.A. Committee ). National Academy Press , Washington , 216 – 251 .  

  92. Woodwell , G. M. , Mackenzie , F. T. , Houghton , R. A. , Apps , M. , Gorham , E. and Davidson , E . 1998 . Biotic feedbacks in the warming of the Earth . Climate Change 40 , 495 – 518 .  

  93. Wullschleger , S. D. , Post , W. M. and King , A. W . 1995 . On the potential for a CO2 fertilization effect in forests: estimates of the basic growth factor based on 58 con-trolled-exposure studies . In: Biotic feedbacks in the global climatic system: will the warming feed the warm-ing? ( eds. G. M. Woodwell and F. T. Mackenzie ). Oxford University Press , Oxford , 85 – 107 .  

comments powered by Disqus