Start Submission Become a Reviewer

Reading: A physically-based algorithm for estimating the relationship between aerosol mass and cloud ...

Download

A- A+
Alt. Display

Original Research Papers

A physically-based algorithm for estimating the relationship between aerosol mass and cloud droplet number

Authors:

Paul Glantz ,

Department of Meteorology, Stockholm University, SE
X close

Kevin J. Noone

Department of Meteorology, Stockholm University, SE
X close

Abstract

In this study, we present a relationship between total accumulation mode aerosol mass concentrations and cloud droplet number concentrations (Nd). The fundamental aim with the present method is to arrive at a physically-based conversion algorithm in which each step in the conversion is based on real physical processes that occur and can be observed in the atmosphere, and in which all of the fields involved can be observed or modeled. In the last conversion (the critical part in the algorithm), we use measurements of the size distributions of cloud droplet residual particles for different pollution conditions. This conversion assumes that the size of the residual particles can be described with a lognormal distribution function and uses the Hatch’Choate relationship to convert between residual volume and number. The relatively sparse data set with which we have developed the present algorithm results in a course classification of the aerosol mass field. Consequently, uncertainties need to be recognized when using the algorithm in its present form in model calculations. The algorithm has been used on data from 15 days and the agreement between calculated and observedNd values is, with one exception, within a factor of 2 and for many of these cases also much better than a factor of 2. In addition to the results of the algorithm itself, we also present a least-squares fit to the predicted Nd values. To improve the algorithm in the longer-term requires more data of scavenging fractions, particle chemical composition and density, and residual particle size distributions as a function of aerosol mass loading and cloud type.

How to Cite: Glantz, P. and Noone, K.J., 2000. A physically-based algorithm for estimating the relationship between aerosol mass and cloud droplet number. Tellus B: Chemical and Physical Meteorology, 52(5), pp.1216–1231. DOI: http://doi.org/10.3402/tellusb.v52i5.17095
  Published on 01 Jan 2000
 Accepted on 27 Mar 2000            Submitted on 31 Mar 1999

REFERENCES

  1. Albrecht , B. A . 1989 . Aerosols, cloud microphysics, and fractional cloudiness . Science 245 , 1227 – 1230 .  

  2. Boucher , O. and Lohmann U. 1995 . The sulfa-te—CNN—cloud albedo effect. Tellus 47B , 281 – 300  

  3. Flossmann , A.I. ., Hall, W. D. and Pruppacher, H. R. 1985. A theoretical study of the wet removal of atmo-spheric pollutants. Part 1: The redistribution of aerosol particles captured nucleation and impaction scaven-ging by growing cloud drops. J. Atmos. Sci . 42 , 583 – 606  

  4. Frick , G. M. and Hoppel , W. A . 1993 . Airship measure-ments of aerosol size distributions, cloud droplet spec-tra, and trace gas concentrations in the marine boundary layer . Bull. Amer. Meteor. Soc . 70 , 354 – 365 .  

  5. Gillani , N. V. , Daum , P. H. , Schwartz , S. E. , Leaitch , W.R. ., Strapp, J. W. and Isaac, G. A. 1992. Fractional activation of accumulation-mode particles in warm continental stratiform clouds. In: Precipitation scaven-ging and atmospheric-surface exchange processes, vol . 1, edited by Schwartz, S. E. and Slinn, W. G. N., pp. 345-358, Hemisphere Bristol, Pa .  

  6. Gillani , N. V. and Schwartz , S. E . 1995 . Field observa-tions in continental stratiform clouds: Partitioning of cloud particles between droplets and unactivated interstitial aerosols. J. Geophys. Res. 100 , D9 , 18,687 – 18,706  

  7. Hallberg , A. , Ogren , J. A. , Noone , K. J. , Heintzenberg , J. , Berner , A. , Solly, I., Kruisz, C., Reischl, G., Fuzzi, S., Facchini, M. C., Hansson, H.-C., Wiedensohler, A. and Svenningsson, I. B. 1992. Phase partitioning for different aerosol species in fog. Tellus 44B , 545 – 555  

  8. Hallberg , A. , Noone , K. J. , Ogren , J. A. , Svenningsson , I. B. , Flossmann , A.I. ., Wiedensohler, A., Hansson, H.-C., Heintzenberg, J., Anderson, T. L., Arends, B. G. and Maser, R. 1994. Phase partitioning of aerosol particles in clouds at Kleiner Feldberg. J. Atmos. Chem . 19 , 107 – 127  

  9. Han , Q. , Rossow , W. B. and Lacis , A. A . 1994 . Near-global survey of effective droplet radii in liquid water clouds using ISCCP data . J. Climate 7 , 475 – 497 .  

  10. Hatch , T. and Choate , S. P . 1929 . Statistical description of the size properties of non-uniform particulate sub-stances . J. Franklin Inst . 207 , 369 .  

  11. Hegg , D. A . 1994 . Cloud condensation nucleus—sulfate mass relationship and cloud albedo. J. Geophys. Res . 99 , D12 , 25,903 – 25,907  

  12. Hegg , D. A. and Hobbs , P. V . 1986 . Sulfate and nitrate chemistry in cumuliform clouds . Atmos. Environ . 20 , 901 – 909 .  

  13. Hegg , D. A. , Ronald , F. J. and Hobbs , P. V . 1993 . Light scattering and cloud condensation nucleus activity of sulfate aerosol measured over the Northeast Atlantic Ocean. J. Geophys. Res . 98 , D8 , 14,887 – 14,894  

  14. Hegg , D. A. , Hobbs , P. V. , Ronald , F. J. and Waggoner , A. P . 1995 . Measurements of some aerosol properties relevant to radiative forcing on the east coast of the United States . J. Applied Meteorology 34 , 2306 – 2315 .  

  15. IPCC . 1995 . Climate change 1995: the science of climate change . J. T. Houghton , L. G. MeriaFilho , B. A. Callander , N. Harris , A. Kattenberg and K. Maskell (eds.). Cambridge University Press , Cambridge, UK .  

  16. Jensen , J. B. and Charlson R. J . 1984 . On the efficiency of nucleation scavenging . Tellus 36B , 367 – 375  

  17. Jones , A. , Roberts , D. L. and Slingo , A . 1994 . A climate model study of indirect radiative forcing by anthropo-genic sulphate aerosols . Nature 370 , 450 – 453 .  

  18. Jones , A. and Slingo , A . 1996 . Predicting cloud-droplet effective radius and indirect sulphate aerosol forcing using a general circulation model . Q. J. R. Meteorol. Soc . 122 , 1573 – 1595 .  

  19. Martin , G. M. , Johnson , D. W. and Spice , A . 1994 . The measurement and parametrisation of effective radius of droplets in warm stratocumulus clouds . J. Atmos. Sci . 51 , 1823 – 1842 .  

  20. Noone , K. J. , Ogren , J. A. , Heintzenberg , J. , Charlson , R. J. and Covert , D. S . 1988 . Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets . Aerosol Sci. Tech . 8 , 235 – 244 .  

  21. Noone , K. J. , Ogren , J. A. , Hallberg , A. , Heintzenberg , J. , Strom , J. , Hansson , H.-C. , Svenningsson , B. , Wied-ensohler , A. , DIM , S. , Facchini , M. C. , Arends , B. G. and Berner , A . 1992 . Change in aerosol size- and phase distributions due to physical and chemical processes in fog . Tellus 44B , 489 – 504 .  

  22. Noone , K. J. , Ostrom , E. , Ferek , R. J. , Garrett , T. , Hobbs , P. V. , Johnson , D. W. , Taylor , J. P. , Russell , L. M. , Flagan , R. C. , Seinfeld , J. H. , O'Dowd , C. D. , Smith , M. H. , Durkee , P. A. , Nielson , K. , Hudson , J. G. , Pockanly , R. A. , DeBock , L. , Van Grieken , R. , Gaspa-rovic , R. F. and Brooks , I . 2000 . A case study of ships forming and not forming tracks in moderately polluted clouds . J. Atmos. Sci . 57 , 2729 – 2747 .  

  23. Novakov , T. and Penner , J. E . 1993 . Large contribution of organic aerosols to cloud-condensation-nuclei con-centrations . Nature 385 , 823 – 826 .  

  24. O'Dowd , C. D. and Smith , M. H . 1993 . Physiochemical properties of aerosols over the Northeast Atlantic. Evidence for wind-speed-related submicron sea-salt aerosol production . J. Geophys. Res . 98 , 1137 – 1149 .  

  25. Ogren , J. A. , Heintzenberg , J. and Charlson , R. J . 1985 . In-situ sampling of clouds with a droplet to aerosol converter . Geophys. Res. Lett . 12 , 121 – 124 .  

  26. Pueschel , R. F. and Van Valin , C. C . 1986 . Aerosol in polluted versus nonpolluted air masses: long-range transport and effects on clouds . J. Climat. Appl. Meteor . 25 , 1908 – 1917 .  

  27. Quinn , P. K. , Marshall , T. S. , Covert , D. S. and Kapustin , V. N . 1995 . Comparison of measured and calculated aerosol properties relevant to the direct radiative forcing of tropospheric sulfate aerosol on climate . J. Geo-phys. Res . 100 , D5 , 8977 – 8991 .  

  28. Rivera-Carpio , C. A. , Corrigan , C. E. and Novakov , T . 1996 . Derivation of contributions of sulfate and car-bonaceous aerosols to cloud condensation nuclei from mass size distributions. J. Geophys. Res . 101, D14, 19,483-19,493 .  

  29. Russell , L. M. , Noone , K. J. , Ferek , R. J. , Pockalny , R. A. , Flagan , R. C. and Seinfeld , J. H . 2000 . Combustion organic aerosol as cloud condensation nuclei in ship tracks . J. Atmos. Sci ., in press .  

  30. Seinfeld , J. H. and Pandis , S. N . Atmospheric chemistry and physics: from air pollution to climate change, 1326 pp. John Wiley & Sons Inc., New York, 1998.  

  31. Slingo , A . 1990 . Sensitivity of the Earth's radiation budget to changes in low clouds . Nature 343 ( 6253 ), 49 – 51 .  

  32. Twomey , S. A . 1977 . Atmospheric aerosols . Elsevier Sci-entific Publishing Co ., Amsterdam , 302 pp .  

  33. Twomey , S. A. , Piepgrass , M. and Wolfe , T. L . 1984 . An assesment of the impact of pollution on global cloud albedo . Tellus 36B , 356 – 366 .  

comments powered by Disqus