Start Submission Become a Reviewer

Reading: Interspecific competition affects temperature stability in Daisyworld

Download

A- A+
Alt. Display

Original Research Papers

Interspecific competition affects temperature stability in Daisyworld

Authors:

Joel E. Cohen ,

Rockefeller University and Columbia University, US
X close

Albert D. Rich

Rockefeller University, US
X close

Abstract

The model of Daisyworld showed that nonteleological mechanistic responses of life to thephysical environment can stabilize an exogenously perturbed environment. In the model, 2species of daisies, black and white, stabilize the global temperature of a planet exposed todifferent levels of insolation. In both species, the response of the growth rate to local temperatureis identical, but differences in albedo between the 2 species generate differences in local temperatures.The shifting balance between the daisies keeps the global temperature in a range suitablefor life. Watson and Lovelock made the stronger claim that ‘‘the model always shows greaterstability with daisies than it does without them.’’ We examined this claim by introducing anextra source of competition into the equations that describe the interactions between the daisyspecies. Depending on the parameters of competition, temperatures can vary more widely withincreasing insolation in the presence of daisies than without them. It now seems possible, timelyand perhaps necessary, to include an accurate representation of interspecific competition whentaking account of vegetational influences on climate.

How to Cite: Cohen, J.E. and Rich, A.D., 2000. Interspecific competition affects temperature stability in Daisyworld. Tellus B: Chemical and Physical Meteorology, 52(3), pp.980–984. DOI: http://doi.org/10.3402/tellusb.v52i3.17079
  Published on 01 Jan 2000
 Accepted on 11 Oct 1999            Submitted on 12 Feb 1999

References

  1. Beerling , D. J. , Chaloner , W. G. and Woodward , F. I . 1998 . Vegetation—climate—atmosphere interactions: past, present and future . Phil. Trans. Roy. Soc. London 353 , 1 – 171 .  

  2. Carter , R. N. and Prince , S. D . 1981 . Epidemic models used to explain biogeographical distribution limits . Nature 293 , 644 – 645 .  

  3. Clements , F. E. , Weaver , J. E. and Hanson , H. C . 1929. Plant competition; an analysis of community functions. Carnegie Institution of Washington. Reprinted: New York: Arno Press, 1977.  

  4. Foley , J. A. , Levis , S. , Prentice , I. C. , Pollard , D. and Thompson , S. L . 1998 . Coupling dynamic models of vegetation and climate . Global Change Biology 4 , 561 – 579 .  

  5. Grace , J. B. and Tilman , D. (eds.). 1990 . Perspectives on plant competition. San Diego: Academic Press, 1990. Harding, S. P. and Lovelock, J. E. 1996. Exploiter-mediated coexistence and frequency-dependent selection in a numerical model of biodiversity . J. Theor. Biol . 182 , 109 – 116 .  

  6. Harper , J. L . 1977 . Population biology of plants . Academic Press , Orlando .  

  7. Hayden , B. P . 1998 . Ecosystem feedbacks on climate at the landscape scale . Phil. Trans. Roy. Soc. London 353 , 5 – 18 .  

  8. Kump , L. R . 1996 . The physiology of the planet . Nature 381 , 111 – 112 .  

  9. Lenton , T. M . 1998 . Gaia and natural selection . Nature 394 , 439 – 447 .  

  10. Lotka , A. J . 1925. Elements of physical biology. Baltimore: Williams and Wilkins. Reprinted 1956: Elements of mathematical biology. New York: Dover.  

  11. Lovelock , J. E . 1988 . The ages of Gaia: a biography of our living earth . W. W. Norton , New York and London .  

  12. Maddock , L . 1991 . Effects of simple environmental feed-back on some population models . Tellus 43B , 331 – 337 .  

  13. Pakes , A. G. and Maller , R. A . 1990 . Mathematical eco-logy of plant species competition: a class of deterministic models for binary mixtures of plant genotypes . Cambridge, England; New York : Cambridge University Press .  

  14. Rice , E. L . 1984 . Allelopathy, 2nd edition . Orlando, FL : Academic Press .  

  15. Rice , E. L . 1995 . Biological control of weeds and plant diseases: advances in applied allelopathy . Norman : University of Oklahoma Press .  

  16. Robertson , D. and Robinson , J. 1998. Darwinian Daisyworld. J. Theor. Biol. 195, 129 – 134.  

  17. Saunders , P. T . 1994 . Evolution without natural selection: further implications of the Daisyworld parable . J. Theor. Biol . 166 , 365 – 373 .  

  18. Soft Warehouse , Inc. 1997. Derive, a mathematical assistant, version no. 4. Computer Algebra System. Soft Ware-house, Inc., Honolulu, Hawaii, USA.  

  19. Watson , A. J . 1999 . Coevolution of the Earth's environment and life: Goldilocks, Gaia and the anthropic principle. In: James Hutton — present and future (eds. Craig, G. Y. and Hall, J. H .). Geological Society, London, Special Publications , 150 , 75 – 88 .  

  20. Watson , A. J. and Lovelock , J. E . 1983 . Biological homeostasis of the global environment: the parable of Daisyworld . Tellus 35B , 284 – 289 .  

comments powered by Disqus