Start Submission Become a Reviewer

Reading: Aerosol modulation of atmospheric and surface solar heating over the tropical Indian Ocean

Download

A- A+
Alt. Display

Original Research Papers

Aerosol modulation of atmospheric and surface solar heating over the tropical Indian Ocean

Authors:

I. A. Podgorny ,

Center for Atmospheric Sciences, Scripps Institution of Oceanography, University of California, US
X close

W. Conant,

Center for Atmospheric Sciences, Scripps Institution of Oceanography, University of California, US
X close

V. Ramanathan,

Center for Atmospheric Sciences, Scripps Institution of Oceanography, University of California, US
X close

S. K. Satheesh

Center for Atmospheric Sciences, Scripps Institution of Oceanography, University of California, US
X close

Abstract

The major finding of this study is that aerosols over the tropical Indian Ocean enhance clear sky atmospheric solar heating significantly and decrease the surface solar heating by even a larger amount. The results presented here are based on aerosol chemical, microphysical, and optical and radiometric data collected at the island of Kaashidhoo (4.97°N, 73.47°E) during February and March of 1998, as part of the first field phase of the Indian Ocean experiment (INDOEX). The aerosol optical properties were integrated with a multiple scattering Monte Carlo radiative transfer model which was validated at the surface with broadband flux measurements and at the top of the atmosphere (TOA) with the clouds and earth’s radiant energy system (CERES) radiation budget measurements. We consider both externally and internally mixed aerosol models with very little difference between the two models in the estimated forcing. For the February−March period, the aerosols increase the monthly mean clear sky atmospheric solar heating by about 12 W/m2(about 15% of the total atmospheric solar heating) and decrease the sea surface clear sky solar heating by about 16 W/m2 with a daily range from 5 to 23 W/m2. The net aerosol forcing at the top of the atmosphere is about −4 W/m2 with a daily range from −2 to −6 W/m2. Although the soot contributes only about 10% to the aerosol optical thickness, it contributes more than 50% to the aerosol induced atmospheric solar heating. The fundamental conclusion of this study is that anthropogenic aerosols over the tropical Indian Ocean are altering the clear sky radiation budget of the atmosphere and surface in a major manner.

How to Cite: Podgorny, I.A., Conant, W., Ramanathan, V. and Satheesh, S.K., 2000. Aerosol modulation of atmospheric and surface solar heating over the tropical Indian Ocean. Tellus B: Chemical and Physical Meteorology, 52(3), pp.947–958. DOI: http://doi.org/10.3402/tellusb.v52i3.17077
  Published on 01 Jan 2000
 Accepted on 12 Oct 1999            Submitted on 14 Dec 1999

References

  1. Barkstrom , B . 1995 . An efficient algorithm for choosing scattering direction in Monte Carlo work with arbitrary phase functions . J. Quant. Spectrosc. Radiat. Transfer 53 , 23 – 38 .  

  2. Briegleb , B. P. , Minnis , P. , Ramanathan , V. and Harrison , E . 1986 . Comparison of regional clearsky albedos inferred from observations and model computations . J. Clim. Appl. Meteor . 25 , 214 – 226 .  

  3. Hess , M. , Koepke , P. and Schult , I . 1998 . Optical properties of aerosols and clouds: the software package OPAC . Bull. Am. Met. Soc . 79 , 831 – 844 .  

  4. Hignett , P. , Taylor , J. P. , Francis , P. N. and Glew , M. D . 1999 . Comparison of observed and modeled direct aerosol forcing during TARFOX . J. Geophys. Res . 104 , 2279 – 2287 .  

  5. Holben , B. N. , Eck , T. F. , Slutsker , I. , Tanre , D. , Buis,  

  6. J. P. , Setzer , A. , Vermote , E. , Reagan , J. A. , Kaufman , Y. J. , Nakajima , T. , Lavenu , F. , Jankowiak, I. and Smirnov , A. 1998. AERONET — A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66, 1 – 16.  

  7. IPCC : Climate change, the IPCC scientific assessment, 1995. Cambridge University Press.  

  8. Jayaraman , A. , Lubin , D. , Ramachandran , S. , Ramanathan , V. , Woodbridge , E. , Collins , W. and Zalpuri,  

  9. K. S . 1998. Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the Jan.—Feb. 1996 pre-INDOEX cruise. J. Geophys. Res . 103 , 13,827 – 13,836.  

  10. Krishnamurti , T. N. , Jha , B. , Prospero , J. M. , Jayaraman , A. and Ramanathan V . 1998 . Aerosol and pollutant transport over the tropical Indian Ocean during the 1996 northeast monsoon and the impact on radiative forcing . Tellus 50B , 521 – 542 .  

  11. Li-Jones , X. and Prospero , J. M . 1998 . Variations in the size distribution of non sea-salt aerosols in the marine boundary layer at Barbados: impact of African dust . J. Geophys. Res . 103 , 16 , 073-16 , 084 .  

  12. Marchuk , G. I. , Mikhailov , G. A. , Nazaraliev , M. A. , Darbinjan , R. A. , Kargin , B. A. and Elepov , B. S . 1980. The Monte Carlo methods in atmospheric optics. (Springer Ser. in Opt. Sci., vol. 12.) Springer-Verlag, New York.  

  13. Podgorny , I. A. and Lubin , D . 1998 . Biologically acti v e  

  14. insolation over Antarctic waters: effect of highly reflecting coastline . J. Geophys. Res . 103 , 2919 – 2928 .  

  15. Podgorny , I. A. , Vogelmann , A. M. and Ramanathan , V . 1998 . Effects of cloud shape and water vapor distribution on solar absorption in the near infrared . Geophys. Res. Lett . 25 , 1899 – 1902 .  

  16. Prospero , J. M. , Maring , H. and Savoie , D . Aerosol chemical composition, light scattering and light absorption in the Maldive islands during the Indian Ocean winter monsoon: the impact of continental sources on aerosol radiative properties . INDOEX Workshop Meeting Notes, Utrecht, The Netherlands, 20-28 June 1998. INDOEX International Project Office, La Jolla, USA, 1998 .  

  17. Ramanathan , V. , Cess , R. D. , Harrison , E. F. , Minnis , P. , Barkstrom , B. R. , Ahmad , E. and Hartmann , D . 1989 . Cloud—radiative forcing and climate: results from the earth radiation budget experiment . Science 243 , 57 – 63 .  

  18. Ramanathan , V. , Crutzen , P. J. , Coakley , J. A. , Clarke,  

  19. A. , Collins , W. D. , Dickerson , R. , Fahey , D. , Gandrud ,  

  20. B. , Heymsfield , A. , Kiehl , J. T. , Kuettner , J. , Krishnamurti , T. , Lubin , D. , Maring , H. , Ogren , J. , Prospero , J. , Rasch , P. J. , Savoie , D. , Shaw , G. , Tuck , A. , Valero , F. P. , Woodbridge E. L. and Zhang , G. 1996. Indian Ocean experiment (INDOEX). C4 Report. Scripps Institution of Oceanography, UCSD, La Jolla, USA (this report is available at the website: HYPERLINK http://www-c4.ucsd.edu) @http://www-c4.ucsd.edu). Satheesh, S. K., Ramanathan, V., Li-Jones, X., Lobed, J. M., Podgorny, I. A., Prospero, J. M., Holben, B. N. and Loeb, N. G. 1999. A model for the natural and antropogenic aerosols over the tropical Indian Ocean from INDOEX data. J. Geophys. Res . 104 , 27,421 – 27,440.  

  21. Shi , L . 1994 . Cloud radiative forcing on surface short-wave fluxes: a case study based on cloud lidar and radar exploratory test . J. Geophys. Res . 99 , 25 , 909-25 , 919 .  

  22. Wielicki , B. A. , Barkstrom , B. R. , Harrison , E. F. , Lee III , R. B. , Smith , G. L. and Cooper , J. E . 1996 . Clouds and the earth radiant energy system (CERES). An earth observing system experiment . Bull. Am. Met. Soc . 77 , 853 – 868 .  

  23. World Meteorological Organization , Atmospheric ozone. 1986. WMO Report 16, 355-362 (Geneva).  

comments powered by Disqus