Start Submission Become a Reviewer

Reading: Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake

Download

A- A+
Alt. Display

Original Research Papers

Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake

Authors:

S. Yonemura ,

National Institute of Agro-Environmental Sciences, JP
X close

M. Yokozawa,

National Institute of Agro-Environmental Sciences, JP
X close

S. Kawashima,

National Institute of Agro-Environmental Sciences, JP
X close

H. Tsuruta

National Institute of Agro-Environmental Sciences, JP
X close

Abstract

CO and H2 uptake by soil was studied as a diffusion process. A diffusion model was used to determine how the surface fluxes (net deposition velocities) were controlled by in-situ microbial uptake rates and soil gas diffusivity calculated from the 3-phase system (solid, liquid, gas) in the soil. Analytical solutions of the diffusion model assuming vertical uniformity of soil properties showed that physical properties such as air-filled porosity and soil gas diffusivity were more important in the uptake process than in the emission process. To incorporate the distribution of in-situ microbial uptake, we used a 2-layer model incorporating “a microbiologically inactive layer and an active layer” as suggested from experimental results. By numerical simulation using the 2-layer model, we estimated the effect of several factors on deposition velocities. The variations in soil gas diffusivity due to physical properties, i.e., soil moisture and air-filled porosity, as well as to the depth of the inactive layer and in-situ microbial uptake, were found to be important in controlling deposition velocities. This result shows that the diffusion process in soil is critically important for CO and H2 uptake by soil, at least in soils with higher in-situ uptake rates and/or with large variation in soil moisture. Similar uptake rates and the difference in deposition velocity between CO and H2 may be attributable to differences in CO and H2 molecular diffusivity. The inactive layer is resistant to diffusion and creates uptake limits in CO and H2 by soil. The coupling of high temperature and a thick inactive layer, common in arid soils, markedly lowers net CO deposition velocity. The temperature for maximum uptake of CO changes with depth of the inactive layer.

How to Cite: Yonemura, S., Yokozawa, M., Kawashima, S. and Tsuruta, H., 2000. Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake. Tellus B: Chemical and Physical Meteorology, 52(3), pp.919–933. DOI: http://doi.org/10.3402/tellusb.v52i3.17075
  Published on 01 Jan 2000
 Accepted on 13 Sep 1999            Submitted on 15 Feb 1999

References

  1. Ball , B. C. , Dobbie , K. E. , Parker , J. P. and Smith , K. A . 1997a . The influence of gas transport and porosity on methane oxidation in soils . J. Geophys. Res . 102 , 23301 – 23308 .  

  2. Ball , B. C. , Smith , K. A. , Klemedtsson , L. , Brumme , R. , Sitaula , B. K. , Hansen , S. , Priemé , A. , MacDonald , J. and Horgan , G. W . 1997b . The influence of soil gas transport properties on methane oxidation in a selection of northern european soils . J. Geophys. Res . 102 , 23309 – 23317 .  

  3. Bender , M. and Conrad , R . 1994 . Microbial oxidation of methane, ammonium and carbon monoxide, and turnover of nitrous oxide and nitric oxide in soils . Biogeochemistry 27 , 97 – 112 .  

  4. Conrad , R . 1988 . Biogeochemistry and ecophysiology of atmospheric CO and H2 . Adv. Microb. Ecol . 10 , 231 – 283 .  

  5. Conrad , R. and Seiler , W . 1980a . Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget . J. Geophys. Res . 85 , 5493 – 5498 .  

  6. Conrad , R. and Seiler , W . 1980b . Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil . Appl. Environ. Microb . 40 , 437 – 445 .  

  7. Conrad , R. and Seiler , W . 1985a . Influence of temperature, moisture, and organic carbon on the flux of H2 and CO between soil and atmosphere: field studies in subtropical regions . J. Geophys. Res . 90 , 5699 – 5709 .  

  8. Conrad , R. and Seiler , W . 1985b . Characteristics of abiological carbon monoxide formation from soil organic matter, humic acids, and phenolic compounds . Environ. Sci. Technol . 19 , 1165 – 1169 .  

  9. Conrad , R. , Weber , M. and Seiler , W . 1983 . Kinetics and electron transport of soil hydrogenases catalyzing t h e  

  10. oxidation of atmospheric hydrogen . Soil Boil. Biochem. 15, 167 – 173.  

  11. Don , H. , Katruff , L. and Levin , I . 1993 . Soil texture parameterization of the methane uptake in aerated soils . Chemosphere 26 , 697 – 713 .  

  12. Ehhalt , D. H. , Schmidt , U. and Heidt , L. E . 1977 . Vertical profiles of molecular hydrogen in the troposphere and stratosphere . J. Geophys. Res . 82 , 5907 – 5911 .  

  13. Fishman , J. and Crutzen , P. J . 1978 . The origin of ozone in the troposphere . Nature 274 , 855 – 858 .  

  14. Heichel , G. H . 1973 . Removal of carbon monoxide by field and forest soils . Environmental Quality 2 , 419 – 423 .  

  15. Ishihara , Y. , Shimojima , E. and Harada , H . 1992 . Water vapor transfer beneath bare soil where evaporation is influenced by a turbulent surface wind . Journal of Hydrology 131 , 63 – 204 .  

  16. Khalil , M. A. K. and Rasmussen , R. A . 1990 . Global cycle of carbon monoxide: trends and mass balance . Chemosphere 20 , 227 – 242 .  

  17. Khalil , M. A. K. and Rasmussen , R. A . 1994 . Global decrease in atmospheric carbon monoxide concentration . Nature 370 , 639 – 641 .  

  18. Kuhlbusch , T. A. J. , Zepp , R. G. , Miller , W. L. and Burke , R. A . 1998 . Carbon monoxide fluxes of different soil layers in upland canadian boreal forests . Tellus 50B , 353 – 365 .  

  19. Liebl , K. H. and Seiler , W . 1976. CO and H2 destruction at the soil surface. In: Microbial producrion and utilization of gases (ed. Schlegel, H. G., Gottschalk, G. and Pfenning, N.). Goltze, Götingen, Germany, pp. 215 – 229  

  20. McMahon , T. A. and Denison , P.J . 1979 . Empirical atmospheric deposition parameters - a survey . Atmos. Envir . 13 , 571 – 585 .  

  21. Marrero , T. R. and Mason , E. A . 1972 . Gaseous diffusion coefficients . J. Phys Chem. Ref. Data 1 , 3 – 118 .  

  22. Matsueda , H. , Inoue , H. Y. , Sawa , Y. , Tsutsumi , Y. and Ishii , M . 1998 . Carbon monoxide in the upper tropo-sphere over the western Pacific between 1993 and 1996 . J. Geophy. Res . 103 , 19 , 093-19 , 110 .  

  23. Millington , R. J. and Quirk , J. M . 1961 . Permeability of porous solids . Trans. Faraday Soc . 57 , 1200 – 1207 .  

  24. Moxley , J. M. and Smith , K. A . 1998a . Factors affecting utilisation of atmospheric CO by soils . Soil Biol. Biochem . 30 , 65 – 79 .  

  25. Moxley , J. M. and Smith , K. A . 1998b . Carbon monoxide production and emission by some scottish soils . Tellus 50B , 151 – 162 .  

  26. National Astronomical Observatory 1994. Science table. Maruzen, Tokyo, pp. 454 (in Japanese).  

  27. Novelli , P. C. , Masarie , K. A. and Lang , P. M . 1998 . Distribution and recent changes of carbon monoxide in the lower troposphere . J. Geophys. Res . 103 , 19015 – 19033 .  

  28. Novelli , P. C. , Lang , P. M. , Masarie , K. A. , Hurst , D. F. , Myers , R. and Elkins , J. W . 1999 . Molecular hydrogen in the troposphere: Global distributions , trends , and budget. J. Geophys. Res ., in press .  

  29. Potter , C. S. , Klooster , S. A. and Chatfield , R. B . 1996 . Consumption and production of carbon monoxide in soils: a glocal model analysis of spatial and seasonal variation . Chemosphere 33 , 1175 – 1193 .  

  30. Sallam , A. , Jury , W. A. and Jetey , J . 1984 . Measurement of gas diffusion coefficient under relatively low air-filled porosity . Soil Sci. Soc. Am. J . 48 , 3 – 6 .  

  31. Sanhueza , E. , Dong , Y. , Scharffe , D. , Lobert , J. M. and Crutzen , P. J . 1998 . Carbon monoxide uptake by temperate forest soils: effects of leaves and humus layers . Tellus 50B , 51 – 58 .  

  32. Sanhueza , E. , Donoso , L. , Scharffe , D. and Crutzen , P. J . 1994 . Carbon monoxide fluxes from natural, managed, or cultivated savannah grasslands . J. Geophys. Res . 99 , 16 , 421-16 , 427 .  

  33. Scharffe , D. , Hao , W. M. , Donoso , L. , Crutzen , P. J. and Sanhueza , E . 1990. Soil fluxes and atmospheric concentration of CO and CH4 in the northern part of the  

  34. guayana shield, Venezuela . J. Geophys. Res . 95 , 22475 – 22480.  

  35. Schmidt , U . 1978 . The latitudinal and vertical distribution of molecular hydrogen in the troposphere . J. Geo-phys. Res . 83 , 941 – 946 .  

  36. Seiler , W. and Conrad , R . 1987 . Contribution of tropical ecosystem to the global budgets of trace gases, especially CH4, H2, CO and N20 . In: The Geophysiology of Amazonia (ed. R. E. Dickinson ). Wiley, New York , 133 – 162 .  

  37. Seiler , W. , Giehl , H. and Bunse , G . 1978 . The influence of plants on atmospheric carbon monoxide . Pageoph . 116 , 439 – 451 .  

  38. Seiler , W. , Giehl , H. and Roggendorf , P . 1980 . Detection of carbon monoxide and hydrogen by conversion of mercury oxide to mercury vapor . Atmos. Tech . 12 , 40 – 45 .  

  39. Smith , K. A. , Bremner , J. M. and Tabatabai , M. A . 1973 . Sorption of gaseous atmospheric pollutants by soils . Soil Sc i . 116 , 313 – 319 .  

  40. Spratt , H. G. and Hubbard , J. S . 1981 . Carbon monoxide metabolism in roadside soils . Appl. Environ. Microbiol . 41 , 1192 – 1201 .  

  41. Tarr , M. A. , Miller , W. L. and Zepp , R. G . 1995 . Direct carbon monoxide photoproduction from plant matter . J. Geophys. Res . 100 , 11403 – 11413 .  

  42. United States Department of Agriculture, Soil Conservation Service 1994 . Keys to soil taxonomy , 6th edition . Pocahontas , Blacksburg Virginia .  

  43. Yonemura , S. , Kawashima , S. and Tsuruta , H . 1999 . Continuous measurements of CO and H2 deposition velocities onto an andisol: uptake control by soil moisture . Tellus 51B , 688 – 700 .  

  44. Zepp , R. G. , Miller , W. L. , Burke , R. A. , Parsons , D. A. B. and Scholes , M. C . 1996 . Effects moisture and burning on soil-atmosphere exchange of trace carbon gases in southern African savannah . J. Geophys. Res . 101 , 23699 – 23706 .  

  45. Zepp , R. G. , Miller , W. L. , Tarr , M. A. and Burke , R. A . 1997 . Soil-atmosphere fluxes of carbon monoxide during early stages of postfire succession in upland canadian boreal forests . J. Geophys. Res . 102 , 29 , 301-29 , 311 .  

comments powered by Disqus