Start Submission Become a Reviewer

Reading: Airborne lidar measurements of aerosol spatial distribution and optical properties over the ...

Download

A- A+
Alt. Display

Original Research Papers

Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2

Authors:

Cyrille Flamant ,

Service d’Aéronomie, CNRS-UPMC-UVSQ, CNRS, Tour 15, Boîte 102, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, FR
X close

Jacques Pelon,

Service d’Aéronomie, CNRS-UPMC-UVSQ, Paris, FR
X close

Patrick Chazette,

Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS, Gif-sur-Yvette, FR
X close

Vincent Trouillet,

Service d’Aéronomie, CNRS-UPMC-UVSQ, Paris, FR
X close

Patricia K. Quinn,

Pacific Marine Environment Laboratories, NOAA, Seattle, WA, US
X close

Robert Frouin,

Scripps Institution of Oceanography, La Jolla, CA, US
X close

Didier Bruneau,

Service d’Aéronomie, CNRS-UPMC-UVSQ, Paris, FR
X close

Jean François Leon,

Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS, Gif-sur-Yvette, FR
X close

Timothy S. Bates,

Pacific Marine Environment Laboratories, NOAA, Seattle, WA, US
X close

James Johnson,

Pacific Marine Environment Laboratories, NOAA, Seattle, WA, US
X close

John Livingston

SRI International, Menlo Park, CA, US
X close

Abstract

Airborne lidar measurements of the aerosol spatial distribution and optical properties associated with an European pollution outbreak which occured during the Second Aerosol Characterization Experiment (ACE-2) are presented. Size distribution spectra measured over the ocean near Sagres (Portugal), on-board the Research Vessel Vodyanitsky and on-board the Avion de Recherche Atmosphérique et Télédétection (ARAT) have been used to parameterize the aerosol vertical distribution. This parameterization, which is essential to the analysis of airborne lidar measurements, has been validated via closure experiments on extinction coefficient profiles and aerosol optical depth (AOD). During the studied event, AOD7’s retrieved from lidar measurements at 0.73 μm range between 0.055 and 0.10. The parameterized aerosol vertical distribution has been used to shift AOD retrievals from 0.73 to 0.55 μm to enable comparison with other remote sensing instruments. At the latter wavelength, AOD’s retrieved from lidar measurements range between 0.08 and 0.14. An agreement better than 20% is obtained between AOD’s derived from lidar and sunphotometer measurements made at the same time and place over the ocean near the coast. However, large differences are observed with the AOD estimated from Meteosat imagery in the same area. These differences are thought to be caused by large uncertainties associated with the Meteosat sensitivity for small AOD’s or by the presence of thin scattered clouds. Lidar-derived particulate extinction profiles and scattering coefficient profiles measured by a nephelometer mounted on the ARAT, in a different part of the plume, were found in good agreement, which could be an indication that absorption by pollution aerosols is small and/or that soot is present in small amounts in the European pollution plume. Lidar measurements have also been used to differentiate the contribution of different aerosol layers to the total AOD. It is shown that the AOD in the marine atmospheric boundary layer (MABL) can contribute as much as 70% of the total AOD in some regions. At 0.73 μm, the AOD in the continental plume was observed to diminish with the distance to the coastline from 0.04 to 0.03.

How to Cite: Flamant, C., Pelon, J., Chazette, P., Trouillet, V., Quinn, P.K., Frouin, R., Bruneau, D., Leon, J.F., Bates, T.S., Johnson, J. and Livingston, J., 2000. Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2. Tellus B: Chemical and Physical Meteorology, 52(2), pp.662–677. DOI: http://doi.org/10.3402/tellusb.v52i2.17126
1
Views
1
Downloads
  Published on 01 Jan 2000
 Accepted on 13 Sep 1999            Submitted on 15 Apr 1999

References

  1. Anderson , B. E. et al. 1996. Aerosols from biomass burn-ing over the tropical South Atlantic region: distribu-tions and impacts. J. Geophys. Res . 101 ,24,117-24,137.  

  2. Anderson , T. L. et al. 1996 . Performance characteristics of a high-sensitivity three-wavelength total scatter/ backscatter coefficient nephelometer . J. Atmos. Oceanic Tech . 13 , 967 – 986 .  

  3. Bates , T. S. , Huebert , B. J. , Gras , J. L. , Griffiths , F. B. and Durkee , P. A . 1994 . International global atmo-spheric chemistry (IGAC) projects' first Aerosol Characterization Experiment (ACE 1). Overview. J. Geophys. Res . 103 , 16,297 – 16,318  

  4. Bates , T. S. , Quinn , P. , Covert , D. S. , Coffman , D. J. and Johnson , D . 2000 . Aerosol physical properties and controlling processes in the lower marine boundary layer: A comparison of sub-micron data from ACE-1 and ACE-2 . Tellus 52B , 258 – 272 .  

  5. Berner A. , Sidla , S. , Galambos , Z. , Kruisz , C. and Hitzen-berger , R . 1996 . Modal character of atmospheric black carbon size distributions. J. Geophys. Res . 101 , 19,559 – 19,565  

  6. Boucher O. and Lohman, U. 1995. The sulfate-CNN-cloud albedo effect: a sensitivity study using two gen-eral circulation models. Tellus B47 , 281 – 300  

  7. Boucher O. and Anderson, T. L. 1995. General circula-tion model assessment of the sensitivity of direct cli-mate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res . 100 , 26,117 – 26,134  

  8. Browell , E. V. et al. 1996 . Large-scale air mass character-istics observed over Western Pacific during sum-mertime . J. Geophys. Res . 101 , 1691 – 1712 .  

  9. Chalon , J.-P. et al. 1998 . Les avions franccais de recher-che atmosphérique et de télédétection . La Météorolo-gie 8 , 14 – 44 .  

  10. Chazette P. , David , C. , Lefrére , J. , Godin , S. , Pelon , J. and Mégie , G . 1995 . Comparative lidar study of the optical, geometrical, and dynamical properties of stra-tospheric post-volcanic aerosols, following the erup-tions of El Chichon and Mount Pinatubo. J. Geophys. Res . 100 , 23,195 – 23,207  

  11. Dulac , F. , Tanre, D., Bergametti, G., Buat-Ménard, P., Desbois, M. and Sutton, D. 1992. Assessment of the African airborne dust mass over the western Mediter-ranean Sea using Meteosat data. J. Geophys. Res . 97 , 2489 – 2506  

  12. Flamant , C. , Trouillet , V. , Chazette , P. and Pelon , J . 1998 . Wind speed dependence of atmospheric bound-ary layer optical properties and ocean surface reflectance as observed by backscatter lidar. J. Geo-phys. Res . 103 , 25,137 – 25,158  

  13. Hanel , G . 1976 . The properties of atmospheric aerosol particles as functions of the relative humidity at ther-modynamic equilibrium with the surrounding moist air . Adv. Geophys . 19 , 73 – 188 .  

  14. Hegg , D. A. , Livingston , J. , Hobbs , P. V. , Novakov , T. and Russell , P . 1997 . Chemical apportionment of the aerosol column optical depth off the mid-Atlantic coast of the United States. J. Geophys. Res . 102 , 25,293 – 25,303  

  15. Heintzenberg , J. and Charlson , R. J . 1996 . Design and applications of the integrating nephelometer: A review . J. Atmos. Oceanic Tech . 13 , 987 – 999 .  

  16. Holben , B. N. , Kaufman , Y. J. , Setzer , A. W. , Tanré , D. and Ward , D. E . 1991 . Optical properties of aerosol emissions from biomass burning in the Tropics, BASE-A. In: Global biomass burning (ed. J. S. Levine , MIT Press, Cambridge, Mass., pp. 403 – 411 .  

  17. Hoppel , W. A. , Fitzgerald , J. W. , Frick , G. M. , Larson , R. E. and Mack , E. J . 1990 . Aerosol size and optical properties found in the marine boundary layer over the Atlantic Ocean . J. Geophys. Res . 95 , 3659 – 3686 .  

  18. von Hoyningen-Huene , W. , Schmidt , T. , Herber , A. and Silva , A. M . 1998 . Climate-relevant columnar aerosol parameters obtained during ACE-2 CLEARCOL-UMN and their influence on the shortwave radiative balance. J. Aerosol Sci . 29 , suppl. 1, S269-S270.  

  19. Jaenicke , R . 1993 . Tropospheric aerosols . In: Aerosol-cloud-climate interactions ( ed. P. V. Hobbs ). Academic Press , San Diego , pp. 1 – 31 .  

  20. Johnson , D. et al. 2000 . An overview of the Lagrangian experiments undertaken during the North Atlantic Regional Aerosol Characterisation Experiment (ACE-2) . Tellus 52B , 290 – 320 .  

  21. Klett , J. D . 1985 . Lidar inversion with variable back-scatter/extinction ratios . Appl. Opt . 24 , 1638 – 1643 .  

  22. Livingston , J. M. , Kapustin , V. N. , Schmid , B. , Russell , P. B. , Quinn , P. K. , Timothy , S. B. , Philip , A. D. and Freudenthaler , V . 2000 . Shipboard sunphotometer measurements of aerosol optical depth spectra and columnar water vapor during ACE-2. Tellus B, this issue.  

  23. Moulin , C. , Lambert , C. E. , Poitou , J. and Dulac , F . 1996 . Long-term (1983-1994) calibration of the Meteosat solar (VIS) channel using desert and marine targets . Int. J. Remote Sens . 17 , 1183 – 1200 .  

  24. Moulin , C. , Guillard , F. , Dulac , F. and Lambert , C. E . 1997a . Long-term daily monitoring of Saharan dust load over marine areas using Meteosat ISCCP-B2 data (I). Methodology and preliminary results for the Western Mediterranean. J. Geophys. Res . 102 , 16,947 – 16,958  

  25. Moulin , C. , Dulac , F. , Lambert , C. E. , Chazette , P. , Jankowiak, I., Chatenet, B. and Lavenu, F. 1997b. Long-term daily monitoring of Saharan dust load over marine areas using Meteosat ISCCP-B2 data (II). Accuracy of the method and validation using sun-photometer measurements. J. Geophys. Res . 102 , 16,959 – 16,969  

  26. Novakov , T. , Hegg , D. A. and Hobbs , P. V . 1997 . Air-borne measurements of carbonaceous aerosols on east coast of the US. J. Geophys. Res . 102 , 30,023 – 30,030  

  27. Novakov , T. , Quinn , P. K. and Bates , T. S . 2000 . A shipboard measurements of concentrations and prop-erties of carboneaceous aerosols during ACE-2 . Tellus 52B , 228 – 238 .  

  28. Neustlls, C. , Weise, D. , Birmili, W. , Wex, H. , Weiden-sohler, A. and Covert, D. 2000. Size-segregated chem-ical, gravimetric, and number distribution derived mass closure of the aerosol in Sagres, Portugal during ACE-2. Tellus B, this issue.  

  29. Paronis , D. , Dulac , F. , Chazette , P. , Hamonou , E. and Liberti , G. L . 1998 . Aerosol optical thichkness mon-itoring in the Mediterranean. J. Aerosol Sci . 29 , suppl. 1, S671—S672.  

  30. Quaglia P. et al. 1996. The airborne water vapor lidar LEANDRE 2: design, realization, tests and first valida-tion. In: Advances in atmospheric remote sensing with lidar ( ed. A. Ansmann , R. Neuber , P. Rairoux and U. Wandinger ). Springer, Berlin, pp. 297 – 300 .  

  31. Quinn , P. K. , Bates , T. S. , Coffman , D. J. , Miller , L. T. , Johnson , J. E. and Covert , D. S . 2000 . A comparison of aerosol chemical and optical properties from the first and second Aerosol Characterization Experiment . Tellus 52B , 239 – 257 .  

  32. Raes , F. , Bates , T. S. , McGovern , F. M. and Van Liedek-erte , M . 2000 . The second Aerosol Characterization Experiment (ACE-2): general overview and main results . Tellus 52B , 111 – 126 .  

  33. Russell , P. B. and Heintzenberg , J . 2000 . An overview of the ACE-2 clear sky column closure experiment (CLEARCOLUMN) . Tellus 52B , 463 – 483 .  

  34. Russell , P. B. , Hobbs , P. V. and Stowe , L. L . 1999 . Aerosol properties and radiative effects in the UIS mid-Atlantic haze plume: an overview of the tropo-spheric aerosol radiative forcing observational experi-ment (TARFOX) . J. Geophys. Res . 104 , 2213 – 2222 .  

  35. Scheele , M. P. , Siegmund , P. C. and Van Velthoven , P. F. J . 1996 . Sensitivity of trajectories to data reso-lution and its dependence on the starting point: in or outside a tropopause fold . Meteor. Appl . 3 , 267 – 273 .  

  36. Sloane , C. S . 1984 . Optical properties of aerosols of mixed composition . Atmos. Env . 18 , 871 – 878 .  

  37. Smith , M.H. ., Consterdine, I. E. and Park, P. M. 1989. Atmospheric loadings of marine aerosol during a Heb-ridean cyclone. Quart. J. Roy. Meteorol. Soc . 115 , 383 – 395  

  38. Tegen I. and Lacis , A. A . 1996 . Modeling of particle size distribution and its influence on the radiative proper-ties of mineral dust aerosol. J. Geophys. Res . 101 , 19,237 – 19,244  

  39. Verver , G. , Raes , F. , Vogelezang , D. and Johnson , D . 2000 . The second Aerosol Characterization Experi-ment (ACE-2): Meteorological and chemical context . Tellus 52B , 126 – 140 .  

  40. Winker , D. M. , Couch , R. H. and McCormick , M. P . 1996 . An overview of LITE: NASA's lidar in-space technology experiment . Proc. IEEE 84 , 164 – 180 .  

comments powered by Disqus