Start Submission Become a Reviewer

Reading: Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2

Download

A- A+
Alt. Display

Original Research Papers

Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2

Authors:

Robert Wood ,

Meteorological Research Flight, Building Y46, DERA, Farnborough, Hampshire, GU14 0LX, GB
X close

Doug Johnson,

Meteorological Research Flight, Meteorological Office, Farnborough, GB
X close

Simon Osborne,

Meteorological Research Flight, Meteorological Office, Farnborough, GB
X close

Meinrat O. Andreae,

Biogeochemistry Department, Max Planck Institute, Mainz, DE
X close

Brian Bandy,

School of Environmental Sciences, University of East Anglia, Norwich, GB
X close

Timothy S. Bates,

NOAA/PMEL, Seattle, US
X close

Colin O’Dowd,

Centre for Marine and Atmospheric Science, University of Sunderland, GB
X close

Paul Glantz,

Department of Meteorology, University of Stockholm, SE
X close

Kevin Noone,

Department of Meteorology, University of Stockholm, SE
X close

Patricia K. Quinn,

NOAA/PMEL, Seattle, US
X close

Jochen Rudolph,

Centre for Atmospheric Chemistry, York University, CA
X close

Karsten Suhre

Laboratoire d’Aerologie, Toulouse, FR
X close

Abstract

Aircraft measurements are presented of the Lagrangian evolution of a marine boundary layer over a 30-h period during the ACE-2 field campaign. At the start of the observational period, a 500-m deep polluted marine internal boundary layer (MIBL) was overlain by the remnants of a polluted continental boundary layer extending to around 2 km below a clean, dry free troposphere. The MIBL grew rapidly to a thickness of 900−1000 m in response to increasing sea surface temperatures. No significant aerosol spectral evolution was observed in the boundary layer. Low concentrations of SO2 were observed in the MIBL suggesting that the air mass contained relatively aged aerosol. Aerosol spectra show a broad mode with a modal diameter of around 0.1μm. The polluted layer between the MIBL and the unpolluted free troposphere was only weakly and intermittently turbulent which prevented significant entrainment of clean air into the polluted layer from aloft. The polluted layer depth was thus controlled mainly by subsidence which as a result becomes shallower, decreasing from over 2000 m to around 1200 m during the observational period. The aerosol characteristics of the polluted layer were similar to those in the MIBL and so although the MIBL entrained considerable amounts of air from above the MIBL the aerosol characteristics underwent no significant change. This has important implications for the rate at which a polluted continental air mass is converted to a clean marine one. The dataset should prove useful in the validation of the modelling of continental pollution outbreaks.

How to Cite: Wood, R., Johnson, D., Osborne, S., Andreae, M.O., Bandy, B., Bates, T.S., O’Dowd, C., Glantz, P., Noone, K., Quinn, P.K., Rudolph, J. and Suhre, K., 2000. Boundary layer and aerosol evolution during the 3rd Lagrangian experiment of ACE-2. Tellus B: Chemical and Physical Meteorology, 52(2), pp.401–422. DOI: http://doi.org/10.3402/tellusb.v52i2.16127
  Published on 01 Jan 2000
 Accepted on 9 Sep 1999            Submitted on 19 Feb 1999

References

  1. Andreae , MO. ,, Berresheim, H., Andreae, T. W. Kritz, M. A., Bates, T. S. and Merrill, J. T. 1988. Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the northeast pacific ocean. J. Atmos. Chem . 6 , 149 – 173 .  

  2. Bates , T. S. , Kapustin , V. N. , Quinn , P. K. , Covert , D. S. , Coffman , D. J. , Mari , C. , Durkee , P. A. , DeBruyn , W. J. and Saltzmann , E. S . 1998 . Processes controlling the distribution of aerosol particles in the marine boundary layer during ACE-1 . J. Geophys. Res . 103 ( D13 ) 16369 – 16383 .  

  3. Bigg , E. K . 1986 . Discrepancy between observation and prediction of cloud condensation nuclei . Atmos. Res . 20 , 8 – 86 .  

  4. Bretherton , C. S. , Austin , P. and Siems , S. T . 1995 . Cloudiness and marine boundary layer dynamics in the astex Lagrangian experiments (II) Cloudiness, drizzle, surface fluxes and entrainment. J. Atmos. Sci . 52 , 2724 – 2735 .  

  5. Brooks , I. M. and Rogers , D. P . 1997 . Aircraft observa-tions of boundary layer rolls off the coast of California. J. Atmos. Sci . 54 , 1834 – 1849 .  

  6. Businger , S. , Johnson , R. , Katzfey , J. , Siems , S. and Wang , Q . 1999 . Smart tetroons for Lagrangian air-mass tracking during ACE-1 . J. Geophys. Res . 104 , D9 , 11709 – 11722 .  

  7. Chuang , P. Y. , Collins , D. R. , Pawloska , H. , Snider , J. R. , Jonsson , H. H. , Brenguier , J. L. , Flagan , R. C. and Seinfeld , J. H . 2000 .  

  8. CCN measurements during ACE- 2 and their relationship to cloud microphysical properties. Tellus 52B , 843 – 867  

  9. Covert , D. S. , Gras , J. L. , Wiedensohler , A. and Strat-mann , F . 1998 . Comparison of directly measured CCN with CCN modeled from the number-size distribution in the marine boundary layer during ACE-1 at Cape Grim, Tasmania . J. Geophys. Res . 103 ( D13 ), 16597 – 16608 .  

  10. Deardorff , J. W . 1980 . Cloud top entrainment instability . J. Atmos. Sci . 37 , 561 – 563 .  

  11. Deardorff , J. W. , Willis , G. E. and Stockton , B. H . 1980 . Laboratory studies of the entrainment zone of a con-vectively mixed layer . J. Fluid Mech . 100 , 41 – 64 .  

  12. Draxler , R. R. and Hess , G. D . 1997 . Description of the hysplit 4 modelling. Technical Memorandum ERL ARL-224, NOAA .  

  13. Fitzgerald , J. W. , Marti , J. J. , Hoppel , W. A. , Frick , G. M. and Gelbard , F . 1998 . A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer: 2. Model application . J. Geophys. Res . 103 ( D13 ), 16103 – 16117 .  

  14. Garratt , 1977 . Review of drag coefficients over oceans and continents . Mon. Wea. Rev . 105 , 915 – 929 .  

  15. Garvey , D. M. and Pinnick , R. G . 1983 . Response charac-teristics of the particle measuring systems active scat-tering aerosol spectrometer probe (ASASP-X) . Aero. Sci. Technol . 2 , 477 – 488 .  

  16. Hignett , P . 1998 . Notes on correction of airborne sea surface temperature measurements for non-blackness effects. Internal Note 28, Meteorological Research Flight .  

  17. Hoell , C. , O'Dowd , C. , Osborne , S. R. and Johnson , D. W . 2000 . Timescale analysis of marine boundary layer aerosol evolution: Lagrangian case studies under clean and polluted conditions . Tellus 52B , 423 – 438 .  

  18. Ji , Q. and Shaw , G. E . 1998 . On supersaturation spec-trum and size distributions of cloud condensation nuclei . Geophys. Res. Lett . 25 , 1903 – 1906 .  

  19. Johnson , D. W. et al. 2000 . Overview of the Lagrangian experiments undertaken during the north Atlantic regional aerosol characterisation experiment (ACE-2) . Tellus 52B , 290 – 320 .  

  20. Johnson , R. , Businger , S. and Baerman , A . 2000 . Lag-rangian air mass tracking with smart balloons during ACE-2 . Tellus 52B , 321 – 334 .  

  21. Lenschow , D. H. , Wyngaard , J. C. and Pennell , W. T . 1980 . Mean-field and second-moment budgets in a baroclinic, convective boundary layer . J. Atmos. Sci . 37 , 1313 – 1326 .  

  22. MacVean , M. K. and Mason , P. J . 1990 . Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models . J. Atmos. Sci . 47 , 1012 – 1030 .  

  23. Martin , G. M. , Johnson , D. W. and Spice , A . 1994 . The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds . J. Atmos. Sci . 51 , 1823 – 1842 .  

  24. Masuda , K. , Takashima , T. and Takayama , Y . 1988 . Emissivity of pure and sea waters for the model sea surface in the infrared window regions . Remote Sensing of Environ . 24 , 313 – 329 .  

  25. Osborne , S. R. , Johnson , D. W. , Wood , R. , Bandy , B. , Andreae , M.O. ., O'Dowd, C., Glantz, P., Noone, K., Rudolph, J., Bates, T. S. and Quinn, P. K. 2000. Evolu-tion of the aerosol, cloud and boundary layer dynamic and thermodynamic characteristics during the second lagrangian experiment of ACE-2. Tellus 52B , 375 – 400  

  26. World Climate Program 1986 . A preliminary cloudless standard atmosphere for radiation computation , World Meteorol . Organ ., Geneva .  

  27. Pueschel , R. F. , Overbeck , V. R. , Snetsinger , K. G. , Rus-sell , P. B. , Ferry , G. V. , Wilson , J. C. , Livingston , J. M. , Verma , S. and Fong , W . 1990 . Calibration correction of an active scattering spectrometer probe to account for refractive index of stratospheric aerosols . Aero. Sci. Technol 12 , 992 – 1002 .  

  28. Putaud , J. P. , Van Dingenen , R. , Mangoni , M. , Virkkula , A. , Raes , F. , Maring , H. , Prospero , J. M. , Swietlicki , E. , Berg, O. H., Hillamo, R. and Makela, T. 2000. Chemical mass closure and origin assessment of the submicron aerosol in the marine boundary layer and the free troposphere at Tenerife during ACE-2. Tellus 52B , 141 – 168  

  29. Raes , F. S. Bates T. , McGovern, F. , and Van Liederkerke, M. 2000. The second aerosol characterisation experiment (ACE-2): general overview and main results. Tellus 52B , 111 – 126  

  30. Randall , D. A . 1980 . Conditional instability of the first kind upside down . J. Atmos. Sci . 37 , 125 – 130 .  

  31. Russell , L. M. , Lenschow , D. H. , Laursen , K. K. , Krum-mel , P. B. , Siems , S. T. , Bandy , A. R. , Thornton , D. C. and Bates , T. S . 1988 . Bidirectional mixing in an ace 1 marine boundary layer overlain by a second turbu-lent layer . J. Geophys. Res . 103 ( D13 ), 16411 – 16432 .  

  32. Seinfeld , J. H. and Pandis , S. N . 1996 . Atmospheric chem-istry and physics . John Wiley and Sons , Toronto , Canada .  

  33. Snider , J. and Brenguier , J. L . 2000 . Cloud condensation nuclei and cloud droplet measurements during ACE-2 Tellus 52B , 828 – 842  

  34. Solazzo , M. J. , Russell , L. M. , Percival , D. , Osborne , S. , Wood , R. and Johnson , D. W . 2000 . Entrainment rates during ACE-2 Lagrangian experiments calculated from aircraft measurements . Tellus 52B , 335 – 347 .  

  35. Stull , R. B . 1988 . Boundary layer meteorology . Kluwer Academic Publishers .  

  36. Sullivan , P. P. , Moeng , C.-H. , Stevens , B. , Lenschow , D. H. and Mayor , S. D . 1998 . Structure of the entrain-ment zone capping the convective atmospheric bound-ary layer . J. Atmos. Sci . 55 , 3042 – 3064 .  

  37. Tomasa , U. , Maenhaut , W. and Cafmeyer , J . 1982 . Trace elements in atmospheric aerosols at Katowice, Poland . In Trace substances in environmental health. ISBN pp 102 – 115 .  

  38. Van Dingenen , R. , Raes , F. , Putaud , J-P. , Virkkula , A. and Mangoni , M . 1999 . Processes determining the relationship between aerosol number and non-sea-salt sulphate mass concentrations in the clean and per-turbed marine boundary layer . J. Geophys. Res . 104 , 8027 – 8038 .  

  39. Vazquez , J. , Perry , K. and Kilpatrick , K . 1998 . NOAA/NASA AVHRR oceans pathfinder sea surface temper-ature data set user's reference manual. Technical Report D-14070 . Jet Propulsion Laboratory.  

  40. Wang , S. C. and Flagan , R. C . 1990 . Scanning electrical particle sizer . Aer. Sci. and Tech . 13 , 230 – 249 .  

  41. Young , K. C. and Warren , A. J . 1992 . A reexamination of the derivation of the equilibrium supersatur-ation curve for soluble particles . J. Atmos. Sci . 49 , 1138 – 1143 .  

comments powered by Disqus