Start Submission Become a Reviewer

Reading: Observations of the evolution of the aerosol, cloud and boundary-layer characteristics durin...

Download

A- A+
Alt. Display

Original Research Papers

Observations of the evolution of the aerosol, cloud and boundary-layer characteristics during the 1st ACE-2 Lagrangian experiment

Authors:

Doug W. Johnson ,

Meteorological Research Flight, Building Y46, DERA, Farnborough, Hants, GU14 0LX, GB
X close

Simon Osborne,

Met. Research Flight, Building Y 46, DERA, Farnborough, Hants, GB
X close

Robert Wood,

Met. Research Flight, Building Y 46, DERA, Farnborough, Hants, GB
X close

Karsten Suhre,

University of Toulouse, FR
X close

Patricia K. Quinn,

PMEL, NOAA, Seattle, US
X close

Tim Bates,

PMEL, NOAA, Seattle, US
X close

M. O. Andreae,

MPIC, Mainz, DE
X close

Kevin J. Noone,

MISU, University of Stockholm, SE
X close

Paul Glantz,

MISU, University of Stockholm, SE
X close

Brian Bandy,

University of East Anglia, GB
X close

J. Rudolph,

University of York, CA
X close

Colin O’Dowd

CMAS, University of Sunderland, GB
X close

Abstract

During the 1st Lagrangian experiment of the North Atlantic Regional Aerosol Characterisation Experiment (ACE-2), a parcel of air was tagged by releasing a smart, constant level balloon into it from the Research Vessel Vodyanitskiy. The Meteorological Research Flight’s C-130 aircraft then followed this parcel over a period of 30 h characterising the marine boundary layer (MBL), the cloud and the physical and chemical aerosol evolution. The air mass had originated over the northern North Atlantic and thus was clean and had low aerosol concentrations. At the beginning of the experiment the MBL was over 1500 m deep and made up of a surface mixed layer (SML) underlying a layer containing cloud beneath a subsidence inversion. Subsidence in the free troposphere caused the depth of the MBL to almost halve during the experiment and, after 26 h, the MBL became well mixed throughout its whole depth. Salt particle mass in the MBL increased as the surface wind speed increased from 8 m s-1 to 16 m s-1 and the accumulation mode (0.1μm to 3.0 μm) aerosol concentrations quadrupled from 50 cm-3 to 200 cm-3. However, at the same time the total condensation nuclei (>3 nm) decreased from over 1000 cm-3 to 750 cm-3. The changes in the accumulation mode aerosol concentrations had a significant effect on the observed cloud microphysics. Observational evidence suggests that the important processes in controlling the Aitken mode concentration which, dominated the total CN concentration, included, scavenging of interstitial aerosol by cloud droplets, enhanced coagulation of Aitken mode aerosol and accumulation mode aerosol due to the increased sea salt aerosol surface area, and dilution of the MBL by free tropospheric air.

How to Cite: Johnson, D.W., Osborne, S., Wood, R., Suhre, K., Quinn, P.K., Bates, T., Andreae, M.O., Noone, K.J., Glantz, P., Bandy, B., Rudolph, J. and O’Dowd, C., 2000. Observations of the evolution of the aerosol, cloud and boundary-layer characteristics during the 1st ACE-2 Lagrangian experiment. Tellus B: Chemical and Physical Meteorology, 52(2), pp.348–374. DOI: http://doi.org/10.3402/tellusb.v52i2.16118
  Published on 01 Jan 2000
 Accepted on 22 Sep 1999            Submitted on 21 Apr 1999

References

  1. Albrecht , B. A. , Bretherton , C. S. , Johnson , D. W. , Schubert , W. H. and Frisch , A. S . 1995 . The Atlantic Stratocumulus Transition Experiment — ASTEX . Bull. Amer. Met. Soc . 76 , 6 , 889 – 904 .  

  2. Andreae , MO. , and Crutzen, P. J. 1997. Atmospheric aerosols: biogeochemical sources and role in atmo-spheric chemistry. Science 276 , 1052 – 1058 .  

  3. Andreae , MO. ,, Berresheim, H., Andreae, T. W., Kritz, M. A., Bates, T. S. and Merril, J. T. 1988. Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions and radon over the north east Pacific Ocean. J. Atmos. Chem . 6 , 149 – 173 .  

  4. Bates , T. S. , Kapustin , V. N. , Quinn , P. K. , Covert , D. S. , Coffman , D. J. , Mari , C. , Durkee , P. A. , De Bruyn , W. J. and Saltzman , E. S . 1998 . Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the first aerosol characterisation experiment . J. Geophys. Res . 103 , 16,369 – 16,383 .  

  5. Bates , T. S. , Quinn , P. K. , Covert , D. S. , Coffman , D. J. , Johnson , J. E. and Weidensohler , A . 2000 . Aerosol physical properties and controlling pro-cesses in the lower marine boundary layer: a com-parison of submicron data from ACE-1 and ACE-2 . Tellus 52B , 258 – 272 .  

  6. Baumgardner , D . 1983 . An analysis and comparison of five water droplet measuring instruments . J. Appl. Meteor . 22 , 891 – 910 .  

  7. Blanchard , D. C. and Woodcock , A. H . 1957 . Bubble formation and modification in the sea and its meteoro-logical significance . Tellus 9 , 145 – 158 .  

  8. Chin , M. and Jacob , D. J . 1996 . Anthropogenic and natural contributions to tropospheric sulfate: a global model analysis . J. Geophys. Res . 101 , 18,691 – 18,699 .  

  9. Chin , M. , Jacob , D. J. , Gardner , G. M. , Foreman , N. S. , Spiro , P. A. and Savoie , D. L . 1996 . A global three dimensional model of tropospheric sulfate . J. Geophys. Res . 101 , 18,667 – 18,690 .  

  10. Clarke , A.D. , Uehara , T. and Porter , J. N . 1996 . Lagrang-ian evolution of an aerosol column during the Atlantic stratocumulus transition experiment . J. Geophys. Res . 101 , 4351 – 4362 .  

  11. Clarke , A. D. , Varner , J. L. , Eisele , F. , Mauldin , R. L. , Tanner , D. and Litchy , M . 1998 . Particle production in the remote marine atmosphere: cloud outflow and subsidence during ACE-1. J. Geophys. Res . 103 , D13, 16,397-16,409.  

  12. Dore , A. , Johnson , D. W. , Osborne , S. , Choularton , T. , Bower , K. , Andreae , M.O. . and Bandy, B. 2000. The evolution of boundary layer aerosol particles due to in-cloud chemical reactions during the second Lagrangian experiment of ACE-2. Tellus 52B , 452 – 463  

  13. Draxler , R. R. and Hess , G. D . 1997 . Description of hysplit 4 modeling . Technical Memorandum ERL ARL-224, NOAA .  

  14. Fiengold , G. , Kreidenweiss , S. M. , Stevens , B. and Cotton , W. R . 1996 . Numerical simulations of strato-cumulus processing of cloud condensation nuclei through collision coalescence. J. Geophys. Res . 101 , 21,391 – 21,402  

  15. Fitzgerald , J. W. , Marti , J. J. , Hoppel , W. A. , Frick , G. M. and Gelbard , F . 1998 . A one dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer (2). Model application. J. Geophys. Res . 103 , 16,103 – 16,117  

  16. Hegg , D. A. , Radke , L. F. and Hobbs , P. V . 1990 . Particle production associated with marine clouds. J. Geophys. Res . 95 , 13,917 – 13,926  

  17. Hoell , C. , O'Dowd , C. , Johnson , D. W. , Osborne , S. R. and Wood , R . 2000 . A time scale analysis of aerosol evolution in polluted and clean Lagrangian case stud-ies . Tellus 52B , 423 – 438 .  

  18. Hoppel , W. A. , Frick , G. M. and Larson , R. E . 1986 . Effect of non-precipitating cloud on the aerosol size distribution in the marine boundary layer . Geophys. Res. Lett . 13 , 125 – 128 .  

  19. Huebert , B. J. , Pszenny , A. and Blomquist , B . 1996 . The ASTEX/MAGE Experiment . J. Geophys. Res . 101 , D2 , 4319 – 4329 .  

  20. Johnson , D. W. , Osborne , S. , Wood , R. , Suhre , K. , John-son , R. , Businger , S. , Quinn , P. K. , Wiedensohler , A. , Durkee , P. A. , Russell , L. M. , Andreae , M.O. ., O'Dowd, C., Noone, K., Bandy, B., Rudolph, J. and Rapsomanikis, S. 2000. An overview of the Lagrangian experiments undertaken during the North Atlantic regional aerosol characterisation experiment. Tellus 52B , 290 – 320  

  21. Johnson , R. , Businger , S. and Baerman , A . 2000 . Lag-rangian air mass tracking with smart balloons during ACE-2 . Tellus 52B , 321 – 334 .  

  22. Martin , G. M. , Johnson , D. W. and Spice , A . 1994 . The measurement and parametrisation of effective radius of droplets in warm stratocumulus clouds . J. Atmos. Sci . 51 , 1823 – 1842 .  

  23. Martin , G. M. , Johnson , D. W. , Rogers , D. P. , Jonas , P. R. , Minnis , P. and Hegg , D . 1995 . Observations of the interactions between cumulus clouds and warm stratocumulus in the marine boundary layer during ASTEX . J. Atmos. Sci . 52 , 16 , 2902 – 2922 .  

  24. McFadyen , G. G. , Cape , J. N. , Flynn , M. , Bandy , B. J. and Wood , R . 2000 . Entrainment and photochemistry of ozone in the marine boundary layer during ACE-2 HILLCLOUD. Tellus B, in press.  

  25. Nicholls , S. , Leighton , J. and Barker , R . 1990 . A new fast response instrument for measuring total water content from aircraft . J. Atmos. Oceanic Technol . 7 , 706 – 718 .  

  26. O'Dowd , C. D. and Smith , M. H . 1993 . Physiochemical properties of aerosols over the Northeast Atlantic: evidence for wind speed related submicron sea salt aerosol production . J. Geophys. Res . 98 , 1137 – 1149 .  

  27. O'Dowd , C. D. , Smith , M. H. , Consterdine, I. E., and Lowe, J. A. 1997. Marine aerosol, sea-salt and the marine sulphur cycle: a short review. Atmos. Res . 31 , 73 – 80  

  28. Osborne , S. R. , Johnson , D. W. , Wood , R. , Bandy , B. J. , Andreae , M.O. ., O'Dowd, C., Glantz, P., Noone, K., Rudolf, J., Bates, T. and Quinn, P. 2000. Observations of the evolution of the aerosol, cloud and boundary layer dynamic and thermodynamic characteristics during the second Lagrangian experiment of ACE-2. Tellus 52B , 375 – 400  

  29. Penkett , S. A. , Bandy , B. J. , Reeves , C. E. , McKenna , D. and Hignett , P . 1995 . Measurements of peroxides in the atmosphere and their relevance to the understand-ing of global tropospheric chemistry . Faraday Discus-sions 100 , 155 – 174 .  

  30. Quinn , P. K. , Bates , T. S. , Coffman , D. J. , Miller , T. L. and Johnson , J. E . 2000 . A comparison of aerosol chemical and optical properties from the first and second aerosol characterisation experiments . Tellus 52B , 239 – 257 .  

  31. Raes , F . 1995 . Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer . J. Geo-phys. Res . 100 , 2893 – 2903 .  

  32. Raes , F. , Bates , T. S. , McGovern , F. M. and Van Liede-kerke , M . 2000 . The second aerosol characterisation experiment (ACE-2): general overview and main results . Tellus 52B , 111 – 126 .  

  33. Rogers , D. P. , Johnson , D. W. and Friehe , C. A . 1995 . The stable internal boundary layer over the coastal sea (I). Airborne measurements of the mean and turbu-lence structure . J. Atmos. Sci . 52 , 667 – 683 .  

  34. Sollazzo , M. J. , Russell , L. M. , Percival , D. , Osborne , S. , Wood , R. and Johnson , D. W . 2000 . Entrainment rates calculated from ACE-2 aircraft measurements . Tellus 52B , 335 – 347 .  

  35. Talbot , R. W , Andreae , M.O. ., Berresheim, H., Artaxo, P., Garstang, M. Harris, R. C., Beecher, K. M. and Li, S. M. 1990. Aerosol chemistry during the wet season in central Amazonia: the influence of long range trans-port. J. Geophys. Res . 95 , 16,955 – 16,969  

  36. Taylor , K. E. and Penner , J. E . 1994 . Responses of the climate system to atmospheric aerosols and green-house gases . Nature 369 , 734 – 737 .  

  37. Van Dingenen , R. , Raes , F. , Putaud , J.-P. , Virkkula , A. and Mangoni , M . 1999 . Processes determining the relationship between aerosol number and non-sea-salt sulfate mass concentration in the clean and perturbed marine boundary layer . J. Geophys. Res . 104 , 8027 – 8038 .  

  38. Wood, R. , Johnson, D. W. , Osborne, S. R. , Bandy, B. J. , Andreae, M. 0. , O'Dowd, C. , Glantz, P. and Noone, K. J. 2000. Boundary layer, aerosol and chemical evolution during the third Lagrangian experiment of ACE-2. Tellus 52B , 401 – 422  

  39. Woodcock , A. H . 1953 . Salt nuclei in marine air as a function of altitude and wind force . J. Met . 10 , 362 .  

comments powered by Disqus