Start Submission Become a Reviewer

Reading: Hygroscopic properties of aerosol particles in the northeastern Atlantic during ACE-2

Download

A- A+
Alt. Display

Original Research Papers

Hygroscopic properties of aerosol particles in the northeastern Atlantic during ACE-2

Authors:

Erik Swietlicki ,

Division of Nuclear Physics, Lund University, PO Box 118, S-221 00 Lund, SE
X close

Jingchuan Zhou,

Division of Nuclear Physics, Lund University, PO Box 118, S-221 00 Lund, SE
X close

David S. Covert,

University of Washington, Department of Atmospheric Sciences, Box 354235, Seattle, WA 98195-4235, US
X close

Kaarle Hämeri,

Department of Physics, PO Box 9, University of Helsinki, FIN-00014 Helsinki, FI
X close

Bernhard Busch,

Institute for Tropospheric Research, Permoser Str. 15, D-04303, Leipzig, DE
X close

Minna Väkeva,

Department of Physics, PO Box 9, University of Helsinki, FIN-00014 Helsinki, FI
X close

Ulrike Dusek,

University of Washington, Department of Atmospheric Sciences, Box 354235, Seattle, WA 98195-4235, US
X close

Olle H. Berg,

Division of Nuclear Physics, Lund University, PO Box 118, S-221 00 Lund, SE
X close

Alfred Wiedensohler,

Institute for Tropospheric Research, Permoser Str. 15, D-04303, Leipzig, DE
X close

Pasi Aalto,

Department of Physics, PO Box 9, University of Helsinki, FIN-00014 Helsinki, FI
X close

Jyrki Mäkelä,

Department of Physics, PO Box 9, University of Helsinki, FIN-00014 Helsinki, FI
X close

Bengt G. Martinsson,

Division of Nuclear Physics, Lund University, PO Box 118, S-221 00 Lund, SE
X close

Giorgos Papaspiropoulos,

Division of Nuclear Physics, Lund University, PO Box 118, S-221 00 Lund, SE
X close

Besim Mentes,

Division of Nuclear Physics, Lund University, PO Box 118, S-221 00 Lund, SE
X close

Göran Frank,

Division of Nuclear Physics, Lund University, PO Box 118, S-221 00 Lund, SE
X close

Frank Stratmann

Institute for Tropospheric Research, Permoser Str. 15, D-04303, Leipzig, DE
X close

Abstract

Measurements of the hygroscopic properties of sub-micrometer atmospheric aerosol particles were performed with hygroscopic tandem differential mobility analysers (H-TDMA) at 5 sites in the subtropical north-eastern Atlantic during the second Aerosol Characterization Experiment (ACE-2) from 16 June to 25 July 1997. Four of the sites were in the marine boundary layer and one was, at least occasionally, in the lower free troposphere. The hygroscopic diameter growth factors of individual aerosol particles in the dry particle diameter range 10−440 nm were generally measured for changes in relative humidity (RH) from <10% to 90%. In the marine boundary layer, growth factors at 90% RH were dependent on location, air mass type and particle size. The data was dominated by a unimodal growth distribution of more-hygroscopic particles, although a bimodal growth distribution including less-hygroscopic particles was observed at times, most often in the more polluted air masses. In clean marine air masses the more-hygroscopic growth factors ranged from about 1.6 to 1.8 with a consistent increase in growth factor with increasing particle size. There was also a tendency toward higher growth factors as sodium to sulphate molar ratio increased with increasing sea-salt contribution at higher wind speeds. During outbreaks of European pollution in the ACE-2 region, the growth factors of the largest particles were reduced, but only slightly. Growth factors at all sizes in both clean and polluted air masses were markedly lower at the Sagres, Portugal site due to more proximate continental influences. The frequency of occurrence of less-hygroscopic particles with a growth factor of ca. 1.15 was greatest during polluted conditions at Sagres. The free tropospheric 50 nm particles were predominately less-hygroscopic, with an intermediate growth factor of 1.4, but more-hygroscopic particles with growth factors of about 1.6 were also frequent. While these particles probably originate from within the marine boundary layer, the less-hygroscopic particles are probably more characteristic of lower free tropospheric air masses. For those occasions when measurements were made at 90% and an intermediate 60% or 70% RH, the growth factor G(RH) of the more-hygroscopic particles could be modelled empirically by a power law expression. For the ubiquitous more-hygroscopic particles, the expressions G(RH)=(1-RH/100)-0.210 for 50 nm Aitken mode particles and G(RH)=(1-RH/100)-0.233 for 166 nm accumulation mode particles are recommended for clean marine air masses in the north-eastern Atlantic within the range 0<RH<95%, and for wind speeds for which the local sea-salt production is small (<ca. 8 m s-1)..

How to Cite: Swietlicki, E., Zhou, J., Covert, D.S., Hämeri, K., Busch, B., Väkeva, M., Dusek, U., Berg, O.H., Wiedensohler, A., Aalto, P., Mäkelä, J., Martinsson, B.G., Papaspiropoulos, G., Mentes, B., Frank, G. and Stratmann, F., 2000. Hygroscopic properties of aerosol particles in the northeastern Atlantic during ACE-2. Tellus B: Chemical and Physical Meteorology, 52(2), pp.201–227. DOI: http://doi.org/10.3402/tellusb.v52i2.16093
1
Views
  Published on 01 Jan 2000
 Accepted on 17 Sep 1999            Submitted on 5 Feb 1999

References

  1. Bates , T. S. , Kapustin , V. N. , Quinn , P. K. , Covert , D. S. , Coffman , D. J. , Mari , C. , Durkee , P. A. , De Bruyn , W. J. and Saltzman , E. S . 1998 . Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the first Aerosol Characteriza-tion Experiment (ACE-1) . J. Geophys. Res . 103 , 16369 – 16383 .  

  2. Bates , T. S. , P. K. Quinn , D. S. Covert , D. J. Coffman and D.W Johnson . 2000 . Aerosol physical properties and controlling processes in the lower marine bound-ary layer: A comparison of sub-micron data from ACE-1 and ACE-2 . Tellus 52B , 258 – 272 .  

  3. Berg, O. H. , Swietlicki, E. and Krejci, R. 1998. Hygro-scopic growth of aerosol particles in the marine bound-ary layer over the Pacific and Southern Oceans during ACE-1. J. Geophys. Res . 103 , 16535 – 16545  

  4. Bower , K. N. , Choularton , T. W. , Gallagher , M. W. , Beswick , K. M. , Flynn , M. , Allen , A. G. , Davison , B. M. , James , J. D. , Robertson , L. , Harrison , R. M. , Hewitt , C. N. , Cape , J. N. , McFadyen , G. G. , Martinsson , B. G. , Frank , G. , Swietlicki , E. , Zhou , J. , Berg, O. H., Mentes, B., Papaspiropoulos, G., Hansson, H-C., Kulmala, M., Aalto, P., Väkeva, M., Berner, A., Bizjak, M., DIM, S., Laj, P., Facchini, M-C., Orsi, G., Ricci, L., Nielsen, M., Allan, B. J., Coe, H., McFiggans, G., Plane, J. M. C., Collett Jr., J. L., Moore, K. F. and Sherman, D. E. 2000. ACE-2 HILLCLOUD: an overview of the ACE-2 ground based cloud experiment. Tellus 52B , 750 – 778  

  5. Clegg S. L. , Brimblecombe P. and Wexler A. S . 1998 . Thermodynamic model of the system 11+-NHZ -Na-SO--NO-Cl--H2O at 298.15 K . J. Phys. Chem . 102A , 2155 – 2171 .  

  6. Hoell , C ., O'Dowd et al. 2000. Time-scale analysis of marine boundary layer aerosol evolution: Lagrangian case studies under clean and polluted conditions. Tellus 52B , 423 – 438  

  7. IPCC (Intergovernmental Panel on Climate Change) 1995 . Climate change: the science of climate change (eds. J. T. Houghton , L. G. Meira Filho , B. A. Callander , N. Harris , A. Kattenberg and K. Maskell ). Cambridge University Press , Cambridge .  

  8. Johnson , D. W. et al. 2000 . An overview of the Lagrang-ian experiments undertaken during the north Atlantic regional aerosol characterisation experiment (ACE-2) . Tellus 52B , 290 – 320 .  

  9. Kerminen , V.-M . 1997 . The effects of particle chemical character and atmospheric processes on particle hygroscopic properties , J. Aerosol Sci . 28 , 121 – 132 .  

  10. McMurry , P. H. and Stolzenburg , M. R . 1989 . On the sensitivity of particle size to relative humidity for Los Angeles aerosols . Atm. Env . 23 , 497 – 507 .  

  11. Murphy , D. M. , Thomson , D. S. , Middlebrook , A. M. and Schein , M. E . 1998 . In situ single-particle charac-terization at Cape Grim , J. Geophys. Res . 103 , 16485 – 16491 .  

  12. Neustlls, C. , Weise, D. , Birmili, W. , Wex, H. , Wieden-sohler, A. , Covert D. S. 2000. Size-segregated chemical, gravimetric and number distribution derived mass closure of the aerosol in Sagres, Portugal during ACE-2, Tellus 52B , 169 – 184  

  13. Nilsson , E. D. , Rannik , O. , Swietlicki , E. , Aalto , P. P. , Zhou , J. and Leck , C . 1998 . Turbulent aerosol number fluxes over the sea and pack ice: Deposition and wind driven fluxes of sub micrometer particles , J. Aerosol Sci . 29 ( S1 ), 505 – 506 .  

  14. O'Dowd , C. D. and Smith , M. H . 1993 . Physico-chemical properties of aerosol over the Northeast Atlantic: evid-ence for wind speed related sub-micron sea-salt aerosol production . J. Geophys. Res ., 98 , 1137 – 1149 .  

  15. Plinis , C. , Pandis , S. N. and Seinfeld , J. H ., 1995 . Sensitiv-ity of direct climate forcing by atmospheric aerosols to aerosol size and composition. J. Geophys. Res ., 100 , 18739 – 18754 .  

  16. Putaud , J. P. , Van Dingenen , R. , Mangoni , M. , Virkkula , A. , Raes , F. , Maring , H. , Prospero , J. M. , Swietlicki, E. Berg , O. H., Hillamo, R. and Makeld T., 2000. Chemical mass closure and origin assessment of the submicron aerosol in the marine boundary layer and the free troposphere at Tenerife during ACE-2. Tellus 52B , 141 – 168  

  17. Quinn , P. K. et al., 2000 . A comparison of aerosol chem-ical and optical properties from the first and second Aerosol Characterization Experiment . Tellus 52B , 239 – 257 .  

  18. Raes , F. , Van Dingenen , R. , Cuevas , E. , Van Velthoven , P. F.J. and Prospero , J. M . 1997 . Observations of aerosols in the free troposphere and marine boundary layer of the subtropical Northeast Atlantic: Discussion of processes determining their size distribution . J. Geo-phys. Res ., 98 , 1137 – 1149 .  

  19. Raes , F. , Bates , T. S. , McGovern , F. and Van Liedekerke , M . 2000 . The Second Aerosol Characterization Experiment (ACE-2): General context and main results . Tellus 52B , 111 – 125 .  

  20. Russell , L. M. , Lenschow , D. H. , Laursen , K. K. , Krum-mel , P. B. , Siems , S. T. , Bandy , A. R. , Thornton , D. C. and Bates , T. S . 1998 . Bidirectional mixing in a n  

  21. ACE-1 marine boundary layer overlain by a second turbulent layer. J. Geophys. Res . 103 , 16411 – 16432 .  

  22. Sollazzo, M. J. , Russell, L. M. , Wood, R. , Osborne. S. , Percival, D. and Johnson D. W. 2000. Entrainment rates during ACE-2 Lagrangian experiments calcu-lated from aircraft measurements. Tellus 52B , 335 – 347 .  

  23. Stull, R. B. 1988. An introduction to boundary layer met-eorology , 670 pp.  

  24. Stratmann F. , Orsini D. and Kauffeldt Th. 1997. Inversion algorithm for TDMA measurements , J. Aerosol Sci . 28 ( S1 ), 701 – 702 .  

  25. Stolzenburg , M. R. and McMurry , P. H . 1988 . TDMAFIT User's Manual . PTL Publications No.653, Particle Technology Laboratory, Department of Mechanical Eng., University of Minnesota, Minnea-polis, MN, USA .  

  26. Svenningsson , B. , Hansson , H-C. , Martinsson , B. , Wied-ensohler , A. , Swietlicki , E. , Cederfelt , S-I. , Wendisch , M. , Bower , K. N. , Choularton , T. W. and Colvile , R. N . 1997 . Cloud droplet nucleation scavenging in relation to the size and hygroscopic behaviour of aero-sol particles . Atm. Env . 31 , 2463 – 2475 .  

  27. Swietlicki , E. , Svenningsson , B. , Martinsson , B. G ., Berg, 0., Frank, G., Cederfeldt,Mentes, B., Hansson,H.-C. and Wiedensohler, A. 1997. Hygroscopic proper-ties of continentally influenced atmospheric aerosol particles and their importance for nucleation scaven-ging. In: Proceedings of EUROTRAC Symposium '96 ( eds: Borrell, P. M. , Borrell, P. , Kelly, K. , Cvitas, T. and Seiler, W. ). Computational Mechanics Publica-tions, Southampton, Vol. 1 , 225 – 229 .  

  28. Swietlicki, E. Zhou , J. , Berg , 0 . H., Nilsson, E. D., Aalto, P. P. and Leck, C. 1998. Hygroscopic behaviour of aerosol particles in the Arctic marine boundary layer — relation to air mass history and mixing. J. Aerosol Sci . 29 ( S1 ), 9 – 10 .  

  29. Swietlicki , E. , Zhou , J ., Berg, 0. H., Martinsson, B. G., Frank, G., Cederfelt,Dusek, U., Berner, A.,Birmili, W., Wiedensohler, A., Yuskiewicz, B. and Bower, K. N. 1999. A closure study of sub-micrometer Aerosol particle hygroscopic behaviour. Atm. Res ., 50 , 205 – 240 .  

  30. Tang , I. N . 1997 . Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance . J. Geophys. Res ., 102 , 1883 – 1893 .  

  31. Tang , I. N. and Munkelwitz , H. R . 1994 . Water activities, densitites, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmopsheric impor-tance . J. Geophys. Res ., 99 , 18801 – 18808 .  

  32. Verver , G. , Raes , F. , Vogelenzang , D. and Johnson , D . 2000 . The Second Aerosol Characterization Experi-ment (ACE-2): Meteorological and chemical context . Tellus 52B , 126 – 140 .  

  33. Weingartner , E. , Burtscher , H. and Baltensperger , U . 1997 . Hygroscopic properties of carbon and diesel soot particles , Atm. Env . 31 , 3211 – 3227 .  

  34. Zhang , X. Q. , McMurry , P. H. , Hering , S. V. and Casuc-cio , G. S ., 1993 . Mixing characteristics and water con-tent of submicron aerosols measured in Los Angeles and at the Grand Canyon . Atm. Env . 27A , 1593 – 1607 .  

comments powered by Disqus