Start Submission Become a Reviewer

Reading: Aerosol particle chemical characteristics measured from aircraft in the lower troposphere du...

Download

A- A+
Alt. Display

Original Research Papers

Aerosol particle chemical characteristics measured from aircraft in the lower troposphere during ACE-2

Authors:

Martina Schmeling,

Department of Chemical Engineering, Princeton University, Princeton, New Jersey, US
X close

Lynn M. Russell ,

Department of Chemical Engineering, Princeton University, A317 Engineering Quadrangle, Princeton University, Princeton, NJ 08544, US
X close

Carynelisa Erlick,

Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, US
X close

Donald R. Collins,

Department of Chemical Engineering, California Institute of Technology, Pasadena, California, US
X close

Haflidi Jonsson,

Department of Meteorology, Naval Postgraduate School, Monterey, California, US
X close

Qing Wang,

Department of Meteorology, Naval Postgraduate School, Monterey, California, US
X close

Peter Kregsamer,

Atominstitut of the Austrian Universities, Vienna, AT
X close

Christina Streli

Atominstitut of the Austrian Universities, Vienna, AT
X close

Abstract

During the Aerosol Characterization Experiment (ACE-2), filter samples were collected aboard the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Pelican aircraft near Tenerife in June and July of 1997. The flights included constant altitude measurements in the boundary layer as well as profiles up to 3800 m providing detailed chemical information about the composition of the aerosol distribution in the lower troposphere. Three cases with different air mass origins—clean marine air, anthropogenically-influenced air from the European continent, and dust-laden air from the Sahara—were identified. The samples were analyzed by ion chromatography (IC) for ionic species, by combined thermal and optical analysis (TOA) for organic carbon, and by total reflection X-ray fluorescence (TXRF) for elemental composition. Particle composition and size distributions for the range of air masses encountered illustrate links in the chemical and microphysical characteristics of aerosol from different sources. Clean marine air masses were characterized by low particle number and mass concentrations with no detectable metals, while anthropogenically-influenced and dust-laden air had high number, mass, and trace metal concentrations. Anthropogenic sources were characterized by high concentrations of submicron particles and some Fe and Cu, whereas dust particle loadings included a significant mass of micron-sized particles and significant loadings of Fe, in addition to small amounts of Mn, Cu, and Ni. These results showed similar tracers for air mass origin as those found in other measurements of oceanic and continental air masses. Aerosol optical properties were estimated with a simplified model of the aerosol based on the measured compositions. The real and imaginary refractive indices and single scattering albedos differed significantly among the three types of aerosol measured, with clean marine aerosol properties showing the least absorption and dust-containing aerosols showing the most. There were only small differences in optical properties for the two different cases of clean marine aerosol, but some significant differences between the two dust cases. Since measurement uncertainties affect these calculations, we studied the type of mixing and the fraction of absorbing species and found the calculation was sensitive to these variations only for the dust-containing aerosol case, probably due to the small amount of water present. While the optical properties varied little with composition for clean marine and anthropogenically-influenced cases, they showed a strong dependence on variations in particle composition and mixing state for the dust-containing cases.

How to Cite: Schmeling, M., Russell, L.M., Erlick, C., Collins, D.R., Jonsson, H., Wang, Q., Kregsamer, P. and Streli, C., 2000. Aerosol particle chemical characteristics measured from aircraft in the lower troposphere during ACE-2. Tellus B: Chemical and Physical Meteorology, 52(2), pp.185–200. DOI: http://doi.org/10.3402/tellusb.v52i2.16092
  Published on 01 Jan 2000
 Accepted on 13 Sep 1999            Submitted on 7 Jan 1999

References

  1. Allen , A. G. , Dick , A. L. and Davison , B. M . 1997 . Sources of atmospheric methanesulphonate, non-sea-salt sulphate, nitrate and related species over the tem-perate south Pacific . Atmos. Environ . 31 , 191 – 205 .  

  2. Arimoto , R. , Duce , R. A. , Ray , B. J. , Ellis Jr., W. G. , Cullen , J. D., and Merrill, J. T. 1995. Trace elements in the atmosphere over the North Atlantic. J. Geophys. Res . 100 , 1199 – 1213  

  3. Bergametti , G. , Gomes , L. , Coudegaussen , G. , Rognon , P. and Lecoustumer , M. N . 1989 . African dust observed over the Canary Islands-source-regions I dentification and transport pattern for some summer situations . J. Geophys. Res . 94 , 14855 – 14864 .  

  4. Birch , M. E. and Cary , R. A . 1996 . Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust . Aerosol Sci. Tech . 25 , 221 – 241 .  

  5. Bohren , C. F. and Huffman , D. R . 1983 Absorption and scattering of light by small particles . John Wiley , New York .  

  6. Brechtel , F. J. , Kreidenweis , S. M. and Swan , H. B . 1998 . Air mass characterisitcs, aerosol particle number con-centrations, and number size distributions at Macqua-rie Island during the first Aerosol Characterization Experiment (ACE-1) . J. Geophys. Res . 103 , 16351 – 16367 .  

  7. Chan , Y. C. , Simpson , R. W. , Mctainsh , G. H. , Vowles , P.D. ., Cohen, D. D. and Bailey, G. M. 1997. Charac-terisation of chemical species in PM2.5 and PM10 aerosols in Brisbane Australia. Atmos. Environ . 31 , 3773 – 3785  

  8. Collins , D. R. , Jonsson , H. H. , Seinfeld , J. H. , Flagan , R. C. , Gasso , S. , Hegg, D., Russell, P. B., Schmid, B., Livingston, J. M., Ostrom, E., Noone, K. J., Russell, L. M. and Putaud, J. P. 2000. In situ aerosol size distributions and clear column radiative closure during ACE-2. Tellus 52B , 498 – 525  

  9. d'Almeida, G. A. , Koepke, P. and Shettle, E. P . 1991 . Atmospheric aerosols: global climatology and radiative characteristics, A . Deepak, Hampton , Va .  

  10. d'Almeida, G. A. and Schutz, L . 1983 . Number, mass, Tellus 52B (2000), 2 and volume distribution of mineral aerosol and soils of the Sahara . J. Clim. Appl. Meteorol . 22 , 233 – 243 .  

  11. Hale , G. M. and Querry , M. R . 1973 . Optical constants of water in the 200-nm to 200 gm wavelength region . Applied Optics 12 , 555 – 563 .  

  12. Hanel , G . 1976 . The properties of atmospheric aerosol particles as functions of the relative humidity at ther-modynamic equilibrium with the surrounding moist air . Adv. Geophys . 19 , 73 – 188 .  

  13. Hegg , D. A. , Ferek , R. J. and Hobbs , P. V . 1993 . Light scattering and cloud condensation nucleus activity of sulfate aerosols measured over the Northeast Atlantic ocean . J. Geophys. Res . 98 , 14887 – 14894 .  

  14. Hoppel , W. A. , Fitzgerald , J. W. , Frick , G. M. , Larson , R. E. and Mack , E. J . 1990 . Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean . J. Geophys. Res . 95 , 3659 – 3686 .  

  15. Howell , S. G. and Huebert , B. J . 1998 . Determining marine aerosol scattering characteristics at ambient humidity from size-resolved chemical composition . J. Geophys. Res . 103 , 1391 – 1404 .  

  16. Huebert , B. J. , Zhuang , L. , Howell , S. , Noone , K. and Noone , B . 1996 . Sulfate, nitrate, methanesulfonate, chloride, ammonium, and sodium measurements from ship, island, and aircraft during the Atlantic Stratocu-mulus Transition Experiment/Marine Aerosol Gas Exchange . J. Geophys. Res . 101 , 4413 – 4423 .  

  17. Huebert , B. J. , Howell , S. G. , Zhuang , L. , Heath , J. A. , Litchy , M. R. , Wylie , D. J. , Kreidler-Moss , J. L. , Coppicus , S. and Pfeiffer , J. E . 1998 . Filter and impactor measurements of anions and cations during the first Aerosol Characterization Experiment (ACE 1) . J. Geophys. Res . 103 , 16493 – 16509 .  

  18. Husar , R. B. , Prospero , J. M. and Stowe , L. L . 1997 . Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product . J. Geophys. Res . 102 , 16889 – 16909 .  

  19. Klockenkämper , R . 1997 . Total reflection X-ray fluores-cence analysis, ed . J. D. Winefordner. John Wiley and Sons , New York , 245 pp .  

  20. Li-Jones , X. and Prospero , J. M . 1998 . Variations in the size distribution of non-sea-salt sulfate aerosols in the marine boundary layer at Barbados: impact of African dust . J. Geophys. Res . 103 , 16073 – 26084 .  

  21. Miranda , J. , Cahill , T. A. , Morales , R. J. , Adalpe , F. , Flores , M. J. and Diaz , R. V . 1994 . Determination of elemental concentrations in atmospheric aerosols in Mexico City using proton induced X-ray emission, proton elastic scattering and laser absorption . Atmos. Environ . 28 , 2299 – 2306 .  

  22. Okamoto , S. , Kobayashi , K. and Yamada , T . 1986 . Char-acterisation of aerosols in the Kashima area and a source apportionment study. In : Sydney Clean Air Congress 1986 , pp. 253 – 262 .  

  23. Ostrom , E. and Noone , K. J . 2000 . Vertical profiles of aerosol scattering and absorption measured in situ during the North Atlantic Aerosol Characterization Experiment . Tellus 52B , 526 – 545 .  

  24. Prospero , J. M. , Savoie , D. L. , Arimoto , R. and Huang , F . 1993 . Long-term trends in mineral dust concentra-tions over the western North Atlantic: Relationship to North African rainfall. Eos Trans. AGU 74, Fall Meet-ing Suppl.  

  25. Putaud , J. P. , Van Dingenen , R. , Mangoni , M. , Virkkula , A. , Raes , F. , Maring , H. , Prospero , J. M. , Swietlicki , E. , Berg, O. H., Hillamo, R. and Makela, T. Chemical mass closure and origin assessment of the submicron aerosol in the marine boundary layer and the free troposphere at Tenerife during ACE-2. Tellus 52B , 141 – 168  

  26. Quinn , P.K. , Coffman , D.J. , Bates , T.S. , and Covert , D.S . 2000 . A comparison of aerosol chemical and optical properties from the first and second Aerosol Charac-terization Experiments . Tellus 52B , 239 – 257 .  

  27. Raes , F. , Bates , T. S. , McGovern , F. M. and Van Liedek-erke , M . 2000 . The second Aerosol Characterization Experiment (ACE-2): General overview and main results . Tellus 52B , 111 – 125 .  

  28. Russel , P. A. and Heintzenberg , J . 2000 . Clear Column Experiments in ACE-2 . Tellus 52B , 463 – 483 .  

  29. Russell , L. M. , Huebert , B. J. , Flagan , R. C. and Seinfeld , J. H . 1996a . Characterization of submicron aerosol size distributions from time-resolved measurements in the Atlantic stratocumulus transition experiment/ marine aerosol and gas exchange . J. Geophys. Res . 101 , 4469 – 4478 .  

  30. Russell , L. M. , Stolzenburg , M. R. , Caldow , R. , Zhang , S. H. , Flagan , R. C. and Seinfeld , J. H . 1996b . Radially-classified aerosol detector for aircraft-based submicron aerosol measurements . J. Atmos. Ocean. Tech . 13 , 598 – 609 .  

  31. Schmeling , M . 1997 . Anwendung der Totalreflexions-Rntgenfluoreszenz zur Analyse von luftgetragenen Partikeln . PhD-thesis , Dortmund , 77 pp .  

  32. Schmeling , M. and Klockow , D . 1997 . Sample collection and preparation for analysis of airborne particulate matter by total reflection X-ray fluorescence spectro-metry . Anal. Chim. Acta 346 , 121 – 126 .  

  33. Schutz , L. and Sebert , M . 1987 . Mineral aerosols and source identification . J. Aerosol Sci . 18 , 1 – 10 .  

  34. Seinfeld , J. H . 1986 . Atmospheric chemistry and physics of air pollution . John Wiley and Sons , New York , 738 pp .  

  35. Streli , C . 1997 . Total reflection X-ray fluorescence ana-lysis of light elements . Spectrochim. Acta 52B , 281 – 293 .  

  36. Swietlicki , E. , Zhou , J. , Berg, O. H., Hameri, K., Vakeva, M., Makela, J., Covert, D. S., Dusek, U., Busch, B., Wiedensohler, A. and Stratmann, F. 2000. Hygro-scopic properties of aerosol particles in the North-eastern Atlantic during ACE-2. Tellus 52B , 201 – 227  

  37. Thursdon , G. D. and Spengler , J. D . 1985 . A quantitative assessment of source contributions to inhalable matter pollution in metropolitan Boston . Atmos. Environ . 19 , 9 – 25 .  

  38. Toon, O. B. , Pollack, J. B. and Khare, B. N. 1976. The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride. J. Geophys. Res . 81 , 5733 – 5742  

  39. Verver , G. , Raes , F. , Vogelezang , D. and Johnson , D . 2000 . The second Aerosol Characterization Experi-ment (ACE-2). Meteorological and chemical context . Tellus 52B , 126 – 140 .  

  40. Weast , R. C. , Astle , M. J. and Beyer , W. H. (Eds.) 1985-1986. CRC Handbook of chemistry and physics , 66th edition . CRC Press , Boca Raton, Fla., p. D-233  

  41. Zhang , X. , Arimoto, R. An, Z. , Chen, T. , Zhang, G. , Zhu, G. , and Wang, X. 1993. Atmospheric trace ele-ments over source regions for chinese dust: Concentra-tions, sources and atmospheric deposition on the Loess Plateau. Atmos. Environ . 27 , 2051 – 2067  

  42. Zhang , X. Y. , Arimoto , R. , Zhu , G. H. , Chen , T. and Zhang , G. Y . 1998 . Concentration, size distribution and deposition of mineral aerosol over Chinese desert regions . Tellus 50B , 317 – 330 .  

comments powered by Disqus