Start Submission Become a Reviewer

Reading: Climate sensitivity to cloud optical properties

Download

A- A+
Alt. Display

Original Research Papers

Climate sensitivity to cloud optical properties

Authors:

Y. Hu ,

Hampton University/NASA LaRC, US
X close

K. Stamnes

Geophysical Institute, University of Alaska-Fairbanks, US
About K.
Present address: Stevens Institute of Technology, NJ 07030, Hoboken, USA.
X close

Abstract

A radiative’convective model was developed to investigate the sensitivity of climate to cloud optical properties and the related feedback processes. This model demonstrates that the Earth’s surface temperature increases with cloud optical depth when the clouds are very thin but decreases with cloud optical depth when the cloud shortwave (solar) radiative forcing is larger than the cloud longwave (terrestrial) radiative forcing. When clouds are included in the model, the magnitude of the greenhouse effect due to a doubling of the CO2 concentration varies with the cloudoptical depth: the thicker the clouds, the weaker the greenhouse warming. In addition, a small variation in the cloud droplet size has a larger impact on the equilibrium state temperature in the lower atmosphere than the warming caused by a doubling of the CO2 concentration: a 2% increase in the average cloud droplet size per degree increase in temperature doubles the warming caused by the doubling of the CO2 concentration. These findings suggest that physically reliable correlations between the cloud droplet size and macrophysical meteorological variables such as temperature, wind and water vapor fields are needed on a global climate scale to assess the climate impact of increases in greenhouse gases.

How to Cite: Hu, Y. and Stamnes, K., 2000. Climate sensitivity to cloud optical properties. Tellus B: Chemical and Physical Meteorology, 52(1), pp.81–93. DOI: http://doi.org/10.3402/tellusb.v52i1.16084
  Published on 01 Jan 2000
 Accepted on 22 Jun 1999            Submitted on 17 Dec 1998

References

  1. Albrecht , B. A . 1989 . Aerosols, cloud microphysics and fractional cloudiness . Science 245 , 1227 – 1230 .  

  2. Betts , A. K. and Harshvardhan , 1987. Thermodynamic constraint on the cloud liquid water feedback in climate models. J. Geophys. Res . 92 , 8483 – 8485 .  

  3. Cess , R. D. and Vulis , I. L . 1989 . Inferring surface solar absorption from broadband satellite measurements . J. Climate 2 , 974 – 985 .  

  4. Cess , R. D. et al. 1989 . Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models . Science 245 , 513 – 516 .  

  5. Cess , R. D. , Dutton , E. G. , Deluisi , J. J. and Jiang , F . 1991 . Determining surface solar absorption from broadband satellite measurements for clear skies: comparison with surface measurements . J. Climate 4 , 236 – 247 .  

  6. Cess , R. D. , Harrison , E. F. , Minnis , P. , Barkstrom , B. R. , Ramanathan , V. and Kwon , T. Y . 1992 . Interpretation of seasonal cloud-climate interactions using ERBE data . J. Geophys. Res . 97 , 7613 – 7617 .  

  7. Charlock , T. P . 1982 . Cloud optical feedback and climate stability in a radiative-convective model . Tellus 34 , 245 – 254 .  

  8. Charlson , R. J. , Lovelock , J. E. , Andreae , M. O. and Warren , S. G . 1987 . Oceanic phytoplankton, atmo-spheric sulfur, cloud albedo and climate . Nature 326 , 655 – 661 .  

  9. Charlson , R. J. , Schwartz , S. E. , Hales , J. M. , Cess , R. D. , Coakley , J. A. , Hansen , J. E. and Hofmann , D. J . 1992 . Climate forcing by anthropogenic aerosols . Science 255 , 423 – 430 .  

  10. Chertock , B. , Frouin , R. and Somerville , R. C. J . 1991 . Global monitoring of net solar irradiance at the ocean surface . J. Climate 4 , 639 – 650 .  

  11. Chou , M.-D . 1991 . The derivation of cloud parameters from satellite measured radiances for use in surface radiation calculation. J. Atmos. Sc i . 48 , 1549 – 1559 .  

  12. Curry , J. A. , Ebert , E. E. and Schramm , J. L . 1993 . Impact of clouds on the surface radiation balance of the arctic ocean . Meteor. Atmos. Phys . 51 , 197 – 217 .  

  13. Harrison , E. F. et al. 1990 . Seasonal variation of cloud radiative forcing derived from the ERBE . J. Geophys. Res . 95 , 18687 – 18703 .  

  14. Hu , Y. X. and Stamnes , K . 1993 . An accurate para-meterization of cloud radiative properties suitable for climate modeling . J. Climate 6 , 728 – 742 .  

  15. Li , Z. and Leighton , H. G . 1993 . Global climatologies of solar radiation budgets at the surface and in the atmo-sphere from 5 years of ERBE data . J. Geophys. Res . 98 , 4919 – 4930 .  

  16. Liou , K.-N. , On , S. C. S. and Lu , P. J . 1985 . Interactive cloud formation and climatic temperature perturbation. J. Atmos. Sc i . 42 , 1969 – 1981 .  

  17. Manabe , S. and Wetherald , R. T . 1967 . Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sc i . 24 , 241 – 259 .  

  18. Mitchell , J. F. B. , Senior C. A. and Ingram W. J . 1989 . CO, and climate: a missing feedback? Nature 341 , 132 – 134 .  

  19. Paltridge , G. W . 1980 . Maximum entropy and climate . Quart. J. R. Meteor. Soc . 106 , 895 – 899 .  

  20. Penner , J. E. , Dickinson , R. E. and O'Neil , C. A . 1992 . Effects of aerosol from biomass burning on the global radiation budget . Science 256 , 1432 – 1434 .  

  21. Pinker , R. T. and Tarpley , J. D . 1988 . The relationship between the planetary and surface net radiation: an update , J. Appl. Meteor . 27 , 957 – 964 .  

  22. Platt , C. M. R . 1989 . The role of cloud microphysics in high-cloud feedback effects on climate change . Nature 341 , 428 – 429 .  

  23. Ramanathan , V . 1987 . The role of earth radiation budget studies in climate and general circulation research . J. Geophys. Res . 92 , 4075 – 4095 .  

  24. Ramanathan , V . 1987 . The role of earth radiation budget studies in climate and general circulation research . J. Geophys. Res . 92 , 4075 – 4095 .  

  25. Ramanathan , V. , Cess , R. D. , Harrison , E. F. , Minnis , P. , Barkstrom , B. R. , Ahmad , E. and Hartmann , D . 1989 . Cloud radiative forcing and climate: results from the ERBE . Science 243 , 57 – 63 .  

  26. Ramanathan , V. and Collins , W . 1992 . Thermostat and global warming . Nature 357 , 649 .  

  27. Roeckner , E. , Schlese , U. , Biecamp , J. and Loewe , P . 1987 . Cloud optical depth feedbacks and the climate modeling . Nature 329 , 138 – 140 .  

  28. Schmetz , J . 1993 . Relationship between solar net radiative fluxes at the top of the atmosphere and at the surface. J. of Atmos. Sc i . 50 , 1122 – 1132 .  

  29. Schneider , S. H . 1972 . Clouds and climate. J. of Atmos. Sc i . 29 , 1413 – 1422 .  

  30. Shaw , G. E . 1983 . Bio-controlled thermostasis involving the sulfur cycle . Climate Change 5 , 297 – 303 .  

  31. Shaw , G. E. , Slinn , G. N. and Preining , O . 1992 . Climate cooled by particles and clouds? Atmos. Environ . 26 , 522 – 523 .  

  32. Slingo , A . 1990 . Sensitivity of the earth's radiation budget to changes in low clouds . Nature 343 , 49 – 51 .  

  33. Smith , R. N. B . 1990 . A scheme for predicting layer clouds and their water content in a GCM . Quart. J. R. Meteor. Soc . 116 , 435 – 460 .  

  34. Somerville , R. C. and Remer , L. A . 1984 . Cloud optical thickness feedbacks in the CO, climate problem . J. Geophys. Res . 89 , 9668 – 9672 .  

  35. Stamnes , K. , Tsay , S.-C. , Wiscombe , W. and Jayaweera , K . 1988 . Numerically stable algorithm For discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media . Appl. Opt . 27 2502 – 2509 .  

  36. Stephens , G. L. and Webster , P. J . 1979 . Sensitivity of radiative forcing to variable cloud and moisture. J. Atmos. Sc i . 36 1542 – 1556 .  

  37. Sundqvist , H. , 1978 . A parameterization scheme for non-convective condensation including prediction of cloud water content . Quart. J. R. Meteor. Soc . 104 677 – 690 .  

  38. Suzuki , T. , Tanaka , M. and Nakajima , T . 1993 . The microphysical feedback of cirrus cloud in climate change . J. Meteor. Soc. Japan 71 , 701 – 713 .  

  39. Tsay , S.-C. , Stamnes , K. and Jayaweera , K . 1989 . Radiative energy budget in the cloudy and hazy arctic. J. Atmos. Sc i . 46 , 1002 – 1018 .  

  40. Twomey , S. A . 1978 . Atmospheric aerosols . Elsevier , North Holland .  

  41. Wang , W.-C. , Rossow , W. B. Yao , M.-S. and Wolfson , M . 1981 . Climate sensitivity of a one-dimensional radiat-ive—convective model with cloud feedback. J. Atmos. Sc i . 38 , 1167 – 1178 .  

  42. Wetherald , R. T. and Manabe , S . 1988 . Cloud feedback processes in a general circulation model. J. Atmos. Sc i . 45 , 1397 – 1415 .  

  43. Wigley , T. M. L . 1991 . Cloud microphysics and the climate effect . Nature 349 , 503 – 506 .  

comments powered by Disqus