Start Submission Become a Reviewer

Reading: Terrestrial carbon sink in the Northern Hemisphere estimated from the atmospheric CO2 differ...

Download

A- A+
Alt. Display

Original Research Papers

Terrestrial carbon sink in the Northern Hemisphere estimated from the atmospheric CO2 difference between Mauna Loa and the South Pole since 1959

Authors:

Song-Miao Fan ,

Atmospheric and Oceanic Sciences Program, Princeton University, US
X close

Tegan L. Blaine,

Atmospheric and Oceanic Sciences Program, Princeton University, US
X close

Jorge L. Sarmiento

Atmospheric and Oceanic Sciences Program, Princeton University, US
X close

Abstract

The diVerence between Mauna Loa and South Pole atmospheric CO2 concentrations from 1959 to the present scales linearly with CO2emissions from fossil fuel burning and cement production (together called fossil CO2). An extrapolation to zero fossil CO2 emission has been used to suggest that the atmospheric CO2 concentration at Mauna Loa was 0.8 ppm less than that at the South Pole before the industrial revolution, associated with a northward atmospheric transport of about 1 Gt C yr-1 (Keeling et al. 1989a). Mass conservation requires an equal southward transport in the ocean. However, our ocean general circulation and biogeochemistry model predicts a much smaller pre-industrial carbon transport. Here, we present a new analysis of the Mauna Loa and South Pole CO2 data, using a general circulation model and a 2-box model of the atmosphere. It is suggested that the present CO2 diVerence between Mauna Loa and the South Pole is caused by, in addition to fossil CO2 sources and sinks, a pre-industrial interhemispheric flux of 0.5–0.7 Gt C yr-1, and a terrestrial sink of 0.8–1.2 Gt C yr-1 in the mid-latitude Northern Hemisphere, balanced by a tropical deforestation source that has been operating continuously in the period from 1959 to the present.

How to Cite: Fan, S.-M., Blaine, T.L. and Sarmiento, J.L., 1999. Terrestrial carbon sink in the Northern Hemisphere estimated from the atmospheric CO2 difference between Mauna Loa and the South Pole since 1959. Tellus B: Chemical and Physical Meteorology, 51(5), pp.863–870. DOI: http://doi.org/10.3402/tellusb.v51i5.16499
  Published on 01 Jan 1999
 Accepted on 26 Apr 1999            Submitted on 13 Jul 1998

References

  1. Andres , R. J. , Marland , G. , Fung , I. and Matthews , E. 1996 . A 10 x 10 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990 . Global Biogeochem. Cycles 10 , 419 – 429 .  

  2. Aumont , O. 1998 . ttude du cycle naturel du carbone dans un modele 3D de l'ocean mondial . These de Doctorat , Universite Paris VI .  

  3. Broecker , W. S. and Peng , T.-H. 1992 . Interhemispheric transport of carbon dioxide by ocean circulation . Nature 356 , 587 – 589 .  

  4. Cao , M. and Woodward , F. I. 1998 . Dynamic responses of terrestrial ecosystem carbon cycling to global climate change . Nature 393 , 249 – 252 .  

  5. Ciais , P. , Tans , P. P. , Trolier , M. , White , J. W. C. and Francey , R. J. 1995 . A large northern hemisphere terrestrial sink induced by the “C/12C ratio of atmo-spheric CO2 . Science 269 , 1098 – 1102 .  

  6. Conway , T. J. , Tans , P. P. , Waterman , L. S. , Thoning , K. W. , Kitzis , D. R. , Maserie , K. A. and Zhang , N. 1994 . Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmo-spheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network . J. Geophys. Res . 99 , 22 , 831-22 , 855 .  

  7. Denning , A. S. , Fung , I. Y. and Randall , D. 1995 . Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota . Nature 376 , 240 – 243 .  

  8. Denning , A. S. , Holzer , M. , Gurney , K. R. , Heimann , M. , Law , R. M. , Rayner , P. J. , Fung , I. Y. , Fan , S.-M. , Taguchi , S. , Friedlingstein , P. , Balkanski , Y. , Maiss , M. and Levin , I. 1999 . Three-dimensional transport and concentration of SF6: a model intercomparison study (TransCom 2) , Tellus , in press .  

  9. Dixon , R. K. , Brown , S. , Houghton , R. A. , Solomon , A. M. , Trexler , M. C. and Wisniewski , J. 1994 . Carbon pools and flux of global forest ecosystems . Science 263 , 185 – 190 .  

  10. Enting , I. G. and Newsam , G. N. 1990 . Atmospheric constituent inversion problems: Implications for base-line monitoring . J. Atmos. Chem . 11 , 69 – 87 .  

  11. Enting , I. G. , Trudinger , C. M. and Francey , R. J. 1995 . A synthesis inversion of the concentration and d 13C of atmospheric CO2 . Tellus 47B , 35 – 52 .  

  12. Fan , S. , Gloor , M. , Mahlman , J. , Pacala , S. , Sarmiento , J. , Takahashi , T. and Tans , P. 1998 . A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models . Science 282 , 442 – 446 .  

  13. Francey , R. J. , Tans , P. P. , Allison , C. E. , Enting , I. G. , White , J. W. C. and Trolier , M. 1995 . Changes in oceanic and terrestrial carbon uptake since 1982 . Nature 373 , 326 – 330 .  

  14. Holland E. A. , Braswell , B. H. et al. 1997 . Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems . J. Geophys. Res . 102 , 15 , 849-15 , 866 .  

  15. Houghton , R. A. and Hackler , J. L. 1994 . Continental scale estimates of the biotic carbon flux from land cover change: 1850 to 1980. ORNL/CDIAC database NDP050, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Tennessee.  

  16. Jacob , D. J. , Prather , M. J. , Wofsy , S. C. and McElroy , M. B. 1987. Atmospheric distribution of “Kr simulated with a general circulation model . J. Geophys. Res . 92 , 6614 – 6626 .  

  17. Joos , F. and Bruno , M. 1998 . Long-term variability of the terrestrial and oceanic carbon sinks and the budgets of the carbon isotopes “C and “C . Global Biogeochem. Cycles 12 , 277 – 295 .  

  18. Keeling , C. D. , Bacastow , R. B. , Carter , A. F. , Piper , S. C. , Whorf , T. P. , Heimann , M. , Mook , W. G. and Roeloffzen , H. 1989a . A three-dimensional model of atmospheric CO2 transport based on observed winds. (1). Analysis of observational data. In: Aspects of climate variability in the Pacific and the western Americas, AGU monograph 55 (ed. Peterson , D. H. ), 165 – 236 . AGU , Washington D.C.  

  19. Keeling , C. D. , Piper , S. C. and Heimann , M. 1989b . A three-dimensional model of atmospheric CO2 transport based on observed winds. (4). Mean annual gradients and interannual variations. In: Aspects of climate variability in the Pacific and the western Americas, AGU monograph 55 (ed. Peterson , D. H. ), 305 – 363 . AGU , Washington D.C.  

  20. Keeling , C. D. , Whorf , T. P. , Wahlen , M. and van der Plicht , J. 1995 . Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 . Nature 375 , 666 – 670 .  

  21. Keeling , R. F. , Piper , S. C. and Heimann , M. 1996 . Global and hemispheric CO2 sinks deduced from changes in atmospheric 02 concentration . Nature 381 , 218 – 221 .  

  22. Keeling , R. F. and Peng , T.-H. 1995 . Transport of heat, CO2 and 02 by the Atlantic's thermohaline circulation . Phil. Trans. R. Soc. Lond. B 348 , 133 – 142 .  

  23. Law , R. M. , Rayner , P. J. , Denning , A. S. , Erickson , D. , Fung , I. Y. , Heimann , M. , Piper , S. C. , Ramonet , M. , Taguchi , S. , Taylor , J. A. , Trudinger , C. M. and Wafterson , I. G. 1996 . Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions . Global Biogeochem. Cycles 10 , 781 – 796 .  

  24. Levin , I. and Hesshaimer , V. 1996 . Refining of atmo-spheric transport model entries by the globally observed passive tracer distributions of 85Kr and sulfur hexafluoride (SF6) . J. Geophys. Res . 101 , 16 , 745-16 , 755 .  

  25. Marland , G , Andres , R. J. and Boden , T. A. 1994 . Global, regional, and national CO2 emissions. In: Trends '93: A compendium of data on global change (eds. Boden , T. A. , Kaiser , D. P. , Sepanski , R. J. and Stoss , F. W. ). ORNL/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Tennessee , pp. 505 – 584 .  

  26. Murnane , R. J. , Sarmiento , J. L. and Le Quere , C. 1999 . The spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans . Global Biogeochem. Cycles , in press .  

  27. Randerson , J. T. , Thompson , M. V. , Conway , T. J. , Fung , I. Y. and Field , C. B. 1997 . The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide . Global Biogeochem. Cycles 11 , 535 – 560 .  

  28. Sarmiento , J. L. , Le Quere , C. and Pacala , S. W. 1995b . Limiting future atmospheric carbon dioxide . Global Biogeochem. Cycles 9 , 121 – 137 .  

  29. Sarmiento , J. L. , Monfray , P. , Maier-Reimer , E. , Aumont , O. , Murnane , R. and Orr , J. 1999. Air-sea CO2 fluxes and carbon transport. A comparison of three ocean general circulation models. Global Biogeo-chem. Cycles , in press .  

  30. Sarmiento , J. L. , Murnane , R. and Le Quere , C. 1995a . Air-sea CO2 transfer and the carbon budget of the North Atlantic . Phil. Trans. R. Soc . 348 , 211 – 218 .  

  31. Sarmiento , J. L. and Sundquist , E. T. 1992 . Revised budget for the oceanic uptake of anthropogenic carbon dioxide . Nature 356 , 589 – 593 .  

  32. Stallard , R. F. 1998 . Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial . Global Biogeochem. Cycles 12 , 231 – 257 .  

  33. Stephens , B. B. , Keeling , R. F. , Heimann , M. , Six , K. D. , Murnane , R. and Caldeira , K. 1998 . Testing global ocean carbon cycle models using measurements of atmospheric 02 and CO2 concentration . Global Bio-geochem. Cycles 12 , 213 – 230 .  

  34. Tans , P. P. , Fung , I. Y. and Takahashi , T. 1990 . Observational constraints on the global atmospheric CO2 budget . Science 247 , 1431 – 1438 .  

  35. Trenberth , E. and Solomon , A. 1994 . The global heat balance: heat transports in the atmosphere and ocean . Climate Dynamics 10 , 107 – 134 .  

comments powered by Disqus