Start Submission Become a Reviewer

Reading: Simulation of the transport of Rn222 using on-line and off-line global models at different h...

Download

A- A+
Alt. Display

Original Research Papers

Simulation of the transport of Rn222 using on-line and off-line global models at different horizontal resolutions: a detailed comparison with measurements

Authors:

Frank Dentener ,

Institute for Marine and Atmospheric Research Utrecht (lMAU), Universiteit Utrecht, NL
X close

Johann Feichter,

Max Planck Institutfür Meteorologie, DE
X close

AD Jeuken

Royal Netherlands Meteorological Institute (KNMI), NL
X close

Abstract

The short-lived radionuclide Rn222 is emitted at a fairly constant rate from the continents and is a good surrogate for studying the transport of “air pollution” from polluted continental areas to clean, remote regions. The large concentration gradients of 2–3 orders of magnitude which exist between the continents and the remote atmosphere present a major challenge to the modelling of horizontal and vertical atmospheric transport. We use the global off-line tracer transport model TM3 at 3 different resolutions. Input to the model consists of meteorological data for the year 1993 obtained from the European Centre for Medium Range Weather Forecasts (ECMWF). The same meteorological data is used to constrain the climate model ECHAM4-T42-L19. Using these meteorological data, Rn222 simulations are used to evaluate and document model performance and associated uncertainties. High time-resolution measurements made at 2 continental stations, 2 stations under continental influence and 4 remote sites, and aircraft measurements obtained during the NARE aircraft campaign are used for a detailed comparison.

Although in specific regions there are inter-model differences of up to a factor of 2 in the calculated boundary layer concentrations, these differences are not translated into a better performance of either model for the stations used for comparison. We generally obtain high correlations of model results and measurements; these range from r= 0.6–0.8 for the continental and coastal stations and 0.5–0.6 for the remote sites. Calculated mean concentrations and corresponding standard deviations generally agree favourably with observations, lending credibility to the usefulness of our models for evaluating transport of air pollutants from continental sources to remote regions. The main cause of model deviations is probably related to uncertainties in the meteorological input data set provided by the ECMWF model and to a lesser extent by our knowledge of the spatial distribution of Rn222 emissions and uncertainties involving sub-grid scale parameterization of vertical transport, e.g., diffusion and convection.

How to Cite: Dentener, F., Feichter, J. and Jeuken, A., 1999. Simulation of the transport of Rn222 using on-line and off-line global models at different horizontal resolutions: a detailed comparison with measurements. Tellus B: Chemical and Physical Meteorology, 51(3), pp.573–602. DOI: http://doi.org/10.3402/tellusb.v51i3.16440
  Published on 01 Jan 1999
 Accepted on 25 Aug 1998            Submitted on 9 Jan 1998

References

  1. Allen , D. J. , Rood , R. B. , Thompson , A. M. and Hudson , R. D. 1996 . Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm . J. Geophys. Res . 101 , 6871 – 6881 .  

  2. Balkanski , Y. J. and Jacob , D. J. 1990 . Transport of continental air to the sub-antarctic Indian Ocean . Tellus 42B , 62 – 75 .  

  3. Beljaars , A. C. M. and Viterbo , P. 1998 . The role of the boundary layer in a numerical weather prediction model. In: Clear and cloudy boundary layers , edited by A. A. M. Holtslag and P. G. Duynkerke. Amsterdam , in press .  

  4. Brinkop , S. and Roeckner , E. 1995 . Sensitivity of a general circulation model to parameterisations of cloudturbulence interactions in the atmospheric boundary layer . Tellus 47A , 197 – 220 .  

  5. Brost , R. A. and Chatfield , R. B. 1989 . Transport of radon in a three-dimensional, subhemispheric model . J. Geophys. Res . 94 , 5095 – 5119 .  

  6. Chen , C. T. and Roeckner , E. 1997 . Cloud simulations with Max Planck Institute for Meteorology general circulation model ECHAM4 and comparison with observations . J. Geophys. Res . 102 , 9335 – 9350 .  

  7. Coll& R. , Unterweger , M. P. , Hodge , P. A. , Hutschinson , J. M. R. , Whittlestone , S. , Polian , G. , Ardouin , B. , Kay , J. G. , Friend , J. P. , Blomquist , B. W. , Nadler , W. , Dang , T. T. , Larsen , R. J. and Hutter , A. R. 1995 . An international intercomparison of marine atmospheric Radon' measurements in Bermuda . J. Geophys. Res . 100 , 16617 – 16638 .  

  8. Dorr , H. and Münnich , O. 1990 . 222Rn flux and soil air concentration profiles in West Germany, soil 222Rn as tracer for transport in the unsaturated soil zone . Tellus 42B , 20 – 28 .  

  9. Downey , A. , Jasper , J. D. , Gras , J. L. and Whittlestone , S. 1990. Lower tropospheric transport over the Southern Ocean. J. Atmos. Chem. 11 , 43 – 68 .  

  10. Feichter , J. and Crutzen , P. J. 1990 . Parameterization of vertical tracer transport due to deep convection in a global transport model and its evaluation with 'Radon measurements . Tellus 42B , 100 – 117 .  

  11. Feichter , J. , Roeckner , E. , Schlese , U. and Windel-band , M. 1991 . Tracer transport in the Hamburg climate model. In: Air pollution modelling and its application , edited by H. van Dop and D. G. Steyn . Plenum Press , New York .  

  12. Feichter , J. , Kjellström , E. , Rodhe , H. , Dentener , F. , Lelieveld , J. and Roelofs , G. J. 1996. Simulation of the tropospheric sulphur cycle in a global climate model . Atrnos. Environ . 30 , 1693 – 1707 .  

  13. Feichter , H. and Lohman , U. 1999 . Can relaxation techniques be used to validate clouds and sulphur species in a G.C.M. Quart. J. Royal Met. Soc ., in press.  

  14. Fisenne , I. 1985 . Radon-222 measurements at Chester, NJ through July 1986. US-DOE RPT. EML-450. Environmental Measurements Laboratory, US Dept. of Energy, New York , 141 – 152 .  

  15. Genthon , C. and Armengaud , A. 1995 . Radon 222 as a comparative tracer of transport and mixing in two general circulation models of the atmosphere . J. Geo-phys. Res . 100 , 2849 – 2866 .  

  16. Gesell , T. F. 1983 . Background atmospheric 222Rn concentrations outdoors and indoors: a review . Health Phys . 45 , 289 – 302 .  

  17. Gibson , R. , Kallberg , P. and Uppala , S. 1997 . The ECMWF Re-Analysis (ERA) Project . ECMWF News-letter 73 , 7 – 17 .  

  18. Gold , S. , Barkhau , H. W. , Schleien , B. and Kahn , B. 1964 . Measurement of naturally occurring radionuclides in air. In: The natural radiation environment , edited by: J. A. S. Adams , and W. M. Lowder , pp. 369 – 382. University of Chicago Press , Chicago Ill .  

  19. Heimann , M. , Monfray , P. and Polian , G. 1990 . Modeling the long range transport of 222Rti to subantarctic and antarctic regions . Tellus 42B , 83 – 99 .  

  20. Heimann , M. 1995 . The global atmospheric tracer model TM2 . Technical report no. 10. Deutsches Klimarechenzentrum (DKRZ), Hamburg, Germany.  

  21. Heimann , M. and Keeling , C. D. 1989 . A three-dimensional model of atmospheric CO, transport based on observed winds . Geophys. Monograph 237 – 275 .  

  22. Houweling , S. , Dentener , F. and Lelieveld , J. 1998 . The impact of non-methane hydrocarbon compounds on tropospheric photo-chemistry . J. Geophys. Res . 103 , 10673 – 10696 .  

  23. Hutter , A. R. , Larsen , R. J. , Mann , H. and Merril , J. T. 1995 . Radon-222 at Bermuda and Mauna Loa: local and distant sources . J. Radioanalytical and Nuclear Chemistry 193 , 309 – 318 .  

  24. Jacob , D. J. et al. 1997 . Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers . J. Geophys. Res . 102 , 5953 – 5970 .  

  25. Jacob , D. J. and Prather , M. J. 1990 . Radon' as a test of convective transport in a general circulation model . Tellus 42B , 118 – 134 .  

  26. Jeuken , A. , Siegmund , P. , Heijboer , L. , Feichter , J. and Bengtsson , L. 1996 . On the potential of assimilated meteorological analysis in a global climate model for the purpose of model validation . J. Geophys. Res . 101 , 16939 – 16950 .  

  27. Kritz , M. 1990 . The China Clipper-fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California . Tellus 42B , 46 – 61 .  

  28. Lambert , G. , Polian , G. and Taupin , D. 1970 . Existence of periodicity in Radon concentrations and in the large-scale circulation at lower altitudes between 40S and 70S . J. Geophys. Res . 75 , 2341 – 2345 .  

  29. Lambert , G. , Ardouin , B. , Polian , G. and Sanak , J. 1975 . Natural radioactivity balance in the atmosphere of the southern hemisphere. The natural radiation environment 2. United States Energy Research and Development Administration, Office of Public Affairs/ Technical Information Center.  

  30. Lambert , G. , Polian , G. , Sanak , J. , Ardouin , B. , Buisson , A. , Jegou , A. and Le Roulley , J-C. C. 1982 . Radon and decay products cycle: application to the tropo-sphere stratosphere exchanges (in French) . Annales de Géophysique 38 , 497 – 531 .  

  31. Lin , X. , Zaucker , F. , Hsie , E. Y. , Trainer , M. and McKeen , S. A. 1996 . Radon 222 simulations as a test of a three-dimensional transport model . J. Geophys. Res . 101 , 29165 – 19177 .  

  32. Liu , S. C. , McAfee , J. R. and Cicerone , R. J. 1984 . Radon 222 and tropospheric vertical transport . J. Geophys. Res . 89 , 7291 – 7297 .  

  33. Louis , J. F. 1979 . A parametric model of vertical eddy fluxes in the atmosphere . Boundary Layer Met . 17 , 187 – 202 .  

  34. Mahowald , N. M. , Rasch , P. J. , Eaton , B. E. , Whittlestone , S. and Prinn , R. G. 1997 . Transport of 222Radon to the remote troposphere using MATCH and assimilated winds from ECMWF and NCEP/ NCAR . J. Geophys. Res . 102 , 28 , 139-28 , 151 .  

  35. Merrill , J. T. , Uetmatsu , M. and Bleck , R. 1989 . Meteoro-logical analysis of long range transport of mineral aerosols over the North Pacific . J. Geophys. Res . 94 , 8584 – 8598 .  

  36. Merrill , J. T. , and Moody , J. 1995 . Synoptic meteorology and transport during the North Atlantic Regional Experiment (NARE) intensive: Overview . J. Geophys. Res . 100 , 28 , 903-28 , 921 .  

  37. Nordeng , T. E. 1994 . Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Tech. Memo 206. Res. Dep. Eur. Centr. for Medium Range Weather forecasts, Reading, England.  

  38. Petersen , A. J. , Spec E. J. , van Dop , H. and Hundsdorfer , W. 1998 . Sensitivity of atmospheric transport model performance to numerical advection schemes and resolution . J. Geophys. Res ., in press .  

  39. Ramonet , M. , Le Roully , J. C. , Bousquet , P. and Monfray , P. 1996 . J . Atmos. Chem . 23 , 107 – 136 .  

  40. Rasch , P. J. and Williamson , D. 1990 . Computational aspects of moisture transport in global models of the atmosphere . Q. J. R. Meteorol. Soc . 116 , 1071 – 1090 .  

  41. Rehfeld , S. and Heimann , M. 1995 . Three dimensional atmospheric transport simulation of the radioactive tracers, 210 Pb, 7Be, 10Be, and 90Sr . J. Geophys. Res. 100 , 26 , 141-26 , 161 .  

  42. Rind , D. and Lerner , J. 1996 . Use of on-line tracers as a diagnostic tool in general circulation model development (1). Horizontal and vertical transport in the troposphere . J. Geophys, Res . 1010 , 12667 – 12683 .  

  43. Roeckner , E. , Arpe , K. , Bengtsson , L. , Christoph , M. , Claussen , M. , Dtimenil , L. , Esch , M. , Giorgetta , M. , Schlese , U. and Schulzweida , U. 1996 . The atmospheric general circulation model ECH AM-4 . Model description and simulation of present-day climate. Report Max-Planck Institute for Meteorology , Hamburg, Germany .  

  44. Roelofs , G. J. , Lelieveld , J. , Smit , H. G. J. and Kley , D. 1997 . Ozone production and transports in the tropical Atlantic region during the biomass burning season . J. Geophys. Res . 102 , 10 , 637-10 , 651 .  

  45. Russell , G. L. and Lerner , J. A. 1981 . A new finite-differencing scheme for the tracer transport equation . J. Applied Meteorology 20 , 1483 – 1498 .  

  46. Schery , S. D. , Whittlestone , S. , Hart , K. P. and Hill , S. E. 1989 . The flux of Radon and Thoron from Australian soils . J. Geophys. Res . 94 , 8567 – 8576 .  

  47. Stockwell , D. Z. , Kritz , M. A. , Chipperfield , M. P. and Pyle , J. A. 1998 . Validation of an off-line 3-D chemical transport module using observed radon profiles — Part II: model results . J. Geophys. Res . 103 , 8433 – 8445 .  

  48. Tiedtke , M. 1989 . A comprehensive mass flux scheme for cumulus parameterisation in large-scale models. Mon . Weather Re v . 117 , 1641 – 1657 .  

  49. Turekian , K. K. , Nozaki , Y. and Benninger , L. 1977 . Geochemistry of atmopheric Radon and radon product. Ann . Rev. Earth Planet. Sc i . 5 , 227 – 255 .  

  50. Van Velthoven , P. and Kelder , H. 1996 . Estimates of stratosphere exchange: sensitivity to model formulation and horizontal resolution . J. Geophys. Res . 101 , 1429 – 1434 .  

  51. Wauben , W. M. F. , Fortuin , J. P. F. , Van Velthoven , P. F. J. and Kelder , H. M. 1998 . Comparison of modelled ozone distributions with sonde and satellite observations . J. Geophys Res . 103 , 3511 – 3530 .  

  52. Wilkening , M. H. 1974 . Radon-222 from the Island of Hawaii: Deep soils are more important than lava fields or volcanoes . Science 183 , 413 – 415 .  

  53. Whittlestone S. , Schery , S. D. and Li , Y. 1996 . Pb-212 as a tracer for local influence on air samples at Mauna Loa Observatory, Hawaii . J. Geophys. Res. 101 , 14 , 777-14 , 785 .  

  54. Zaucker , F. , Daum , P. H. , Wetterauer , U. , Berkowitz , C. , Kromer , B. and Broecker , W. 1996 . Atmospheric 222RI1 measurements during the Nare intensive . J. Geophys. Res . 101 , 29 , 149-29 , 164 .  

comments powered by Disqus